Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA 109:E2939-E2948

Departments of Pathology and Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 09/2012; 109(43):E2939-48. DOI: 10.1073/pnas.1206400109
Source: PubMed

ABSTRACT Chemoresistance to platinum therapy is a major obstacle that needs to be overcome in the treatment of ovarian cancer patients. The high rates and patterns of therapeutic failure seen in patients are consistent with a steady accumulation of drug-resistant cancer stem cells (CSCs). This study demonstrates that the Notch signaling pathway and Notch3 in particular are critical for the regulation of CSCs and tumor resistance to platinum. We show that Notch3 overexpression in tumor cells results in expansion of CSCs and increased platinum chemoresistance. In contrast, γ-secretase inhibitor (GSI), a Notch pathway inhibitor, depletes CSCs and increases tumor sensitivity to platinum. Similarly, a Notch3 siRNA knockdown increases the response to platinum therapy, further demonstrating that modulation of tumor chemosensitivity by GSI is Notch specific. Most importantly, the cisplatin/GSI combination is the only treatment that effectively eliminates both CSCs and the bulk of tumor cells, indicating that a dual combination targeting both populations is needed for tumor eradication. In addition, we found that the cisplatin/GSI combination therapy has a synergistic cytotoxic effect in Notch-dependent tumor cells by enhancing the DNA-damage response, G(2)/M cell-cycle arrest, and apoptosis. Based on these results, we conclude that targeting the Notch pathway could significantly increase tumor sensitivity to platinum therapy. Our study suggests important clinical applications for targeting Notch as part of novel treatment strategies upon diagnosis of ovarian cancer and at recurrence. Both platinum-resistant and platinum-sensitive relapses may benefit from such an approach as clinical data suggest that all relapses after platinum therapy are increasingly platinum resistant.

Download full-text


Available from: Barish Poole, Jan 10, 2015
34 Reads
  • Source
    • "Notch plays a significant role in ovarian CSCs regulation and in platinum resistance (Park et al., 2006; Takebe et al., 2011). Also, Notch 3 inhibitors increase the sensitivity of ovarian cancer to cisplatin, reducing the ovarian CSC population (McAuliffe et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB) are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumor therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach where specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation) and cytotoxic activity toward CSCs and the corresponding differentiated tumor cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active toward MDR pumps on CSCs isolated by tumor specimens.
    Frontiers in Pharmacology 07/2014; 5:163. DOI:10.3389/fphar.2014.00163 · 3.80 Impact Factor
  • Source
    • "Ovarian carcinomas expressing NICD3 are resistant to platinum therapeutic agents [22], [30], [31]. We have previously shown that MSeA treatment (LD50, 4 µmol/L) kills HCT116 colorectal, PC-3 prostate and U-2 OS osteosarcoma cells in association with reactive oxygen species (ROS), ATM and DNA-PKcs [12], [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer, the deadliest of gynecologic cancers, is usually not diagnosed until advanced stages. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-containing drug. Expression of neurogenic locus notch homolog 3 (Notch3) is associated with chemoresistance and poor overall survival in ovarian cancer patients. Overexpression of NICD3 (the constitutively active form of Notch3) in OVCA429 ovarian cancer cells (OVCA429/NICD3) renders them resistance to carboplatin treatment compared to OVCA429/pCEG cells expressing an empty vector. We have previously shown that methylseleninic acid (MSeA) induces oxidative stress and activates ataxia-telangiectasia mutated and DNA-dependent protein kinase in cancer cells. Here we tested the hypothesis that MSeA and carboplatin exerted a synthetic lethal effect on OVCA429/NICD3 cells. Co-treatment with MSeA synergistically sensitized OVCA429/NICD3 but not OVCA429/pCEG cells to the killing by carboplatin. This synergism was associated with a cell cycle exit at the G2/M phase and the induction of NICD3 target gene HES1. Treatment of N-acetyl cysteine or inhibitors of the above two kinases did not directly impact on the synergism in OVCA429/NICD3 cells. Taken together, these results suggest that the efficacy of carboplatin in the treatment of high grade ovarian carcinoma can be enhanced by a combinational therapy with MSeA.
    PLoS ONE 07/2014; 9(7):e101664. DOI:10.1371/journal.pone.0101664 · 3.23 Impact Factor
  • Source
    • "This finding was supported by recent data from TCGA, which also showed that Notch3 was amplified in serous ovarian carcinoma (2). Our data support the finding that cleaved Notch3 is present in primary OvCa samples and likely contributes to the pathology of OvCa (24, 25, 39, 48). Blocking Notch3 signaling by a GSI or a Notch3 specific siRNA reduced cell number and led to an increase in apoptosis in OVCAR3 and A2780 OvCa lines (24). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Ovarian cancer (OvCa) is the most lethal gynecologic malignancy in the United States because of chemoresistant recurrent disease. Our objective was to investigate the efficacy of inhibiting the Notch pathway with a γ-secretase inhibitor (GSI) in an OvCa patient-derived xenograft model as a single agent therapy and in combination with standard chemotherapy. Methods: Immunocompromised mice bearing xenografts derived from clinically platinum-sensitive human ovarian serous carcinomas were treated with vehicle, GSI (MRK-003) alone, paclitaxel and carboplatin (P/C) alone, or the combination of GSI and P/C. Mice bearing platinum-resistant xenografts were given GSI with or without paclitaxel. Gene transcript levels of the Notch pathway target Hes1 were analyzed using RT-PCR. Notch1 and Notch3 protein levels were evaluated. The Wilcoxon rank-sum test was used to assess significance between the different treatment groups. Results: Expression of Notch1 and 3 was variable. GSI alone decreased tumor growth in two of three platinum-sensitive ovarian tumors (p < 0.05), as well as in one of three platinum-sensitive tumors (p = 0.04). The combination of GSI and paclitaxel was significantly more effective than GSI alone and paclitaxel alone in all platinum-resistant ovarian tumors (all p < 0.05). The addition of GSI did not alter the effect of P/C in platinum-sensitive tumors. Interestingly, although the response of each tumor to chronic GSI exposure did not correlate with its endogenous level of Notch expression, GSI did negatively affect Notch signaling in an acute setting. Conclusion: Inhibiting the Notch signaling cascade with a GSI reduces primary human xenograft growth in vivo. GSI synergized with conventional cytotoxic chemotherapy only in the platinum-resistant OvCa models with single agent paclitaxel. These findings suggest inhibition of the Notch pathway in concert with taxane therapy may hold promise for treatment of platinum-resistant OvCa.
    Frontiers in Oncology 07/2014; 4:171. DOI:10.3389/fonc.2014.00171
Show more