Identification of tropomyosin and arginine kinase as major allergens of Portunus pelagicus (blue swimming crab)

Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia.
Tropical biomedicine (Impact Factor: 0.85). 09/2012; 29(3):467-78.
Source: PubMed


Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.

44 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shellfish allergy is a major cause of food-induced anaphylaxis, but the allergens are not well characterized. This study examined the effects of heating on blue swimmer crab (Portunus pelagicus) allergens in comparison with those of black tiger prawn (Penaeus monodon) by testing reactivity with shellfish-allergic subjects' serum IgE. Cooked extracts of both species showed markedly increased IgE reactivity by ELISA and immunoblotting, and clinical relevance of IgE reactivity was confirmed by basophil activation tests. Inhibition IgE ELISA and immunoblotting demonstrated cross-reactivity between the crab and prawn extracts, predominantly due to tropomyosin, but crab-specific IgE-reactivity was also observed. The major blue swimmer crab allergen tropomyosin, Por p 1, was cloned and sequenced, showing strong homology with tropomyosin of other crustacean species but also sequence variation within known and predicted linear IgE epitopes. These findings will advance more reliable diagnosis and management of potentially severe food allergy due to crustaceans.
    PLoS ONE 06/2013; 8(6):e67487. DOI:10.1371/journal.pone.0067487 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arginine kinase (AK) has attracted considerable attention because it has been identified as a shellfish allergen. However, little information is available about AK in crayfish (Procambarus clarkii). In this study, crayfish AK was purified and cloned. Its physicochemical properties, processing stability, and immunological characteristics were analyzed. Crayfish AK was purified by column chromatography, which revealed a single band with molecular mass of 40 kDa; this result was further confirmed by mass spectrometry. The full-length gene sequence of crayfish AK was 1,462 bp and encoded a protein of 357 amino acid residues. The results of this study revealed that crayfish AK is a glycoprotein with an isoelectric point of approximately 6.5. Thermal stability assays revealed that crayfish AK easily forms aggregates at temperatures >44°C and was stable at pH 4.0-8.0. SDS-PAGE and dot blotting were used to assess processing stability of purified AK. The results revealed that the IgE-binding activity of crayfish AK is reduced after boiling.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 09/2013; 62. DOI:10.1016/j.fct.2013.09.014 · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shellfish allergy is of increasing concern, as its prevalence has risen in recent years. Many advances have been made in allergen characterization. B cell epitopes in the major allergen tropomyosin have been characterized. In addition to tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, and myosin light chain have recently been reported in shellfish. All are proteins that play a role in muscular contraction. Additional allergens such as hemocyanin have also been described. The effect of processing methods on these allergens has been studied, revealing thermal stability and resistance to peptic digestion in some cases. Modifications after Maillard reactions have also been addressed, although in some cases with conflicting results. In recent years, new hypoallergenic molecules have been developed, which constitute a new therapeutic approach to allergic disorders. A recombinant hypoallergenic tropomyosin has been developed, which opens a new avenue in the treatment of shellfish allergy. Cross-reactivity with species that are not closely related is common in shellfish-allergic patients, as many of shellfish allergens are widely distributed panallergens in invertebrates. Cross-reactivity with house dust mites is well known, but other species can also be involved in this phenomenon.
    Clinical Reviews in Allergy & Immunology 05/2014; DOI:10.1007/s12016-014-8429-8 · 5.46 Impact Factor
Show more