Article

Multimodal Magnetic Resonance Imaging Assessment of White Matter Aging Trajectories Over the Lifespan of Healthy Individuals.

Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, California
Biological psychiatry (Impact Factor: 8.93). 09/2012; DOI: 10.1016/j.biopsych.2012.07.010
Source: PubMed

ABSTRACT BACKGROUND: Postmortem and volumetric imaging data suggest that brain myelination is a dynamic lifelong process that, in vulnerable late-myelinating regions, peaks in middle age. We examined whether known regional differences in axon size and age at myelination influence the timing and rates of development and degeneration/repair trajectories of white matter (WM) microstructure biomarkers. METHODS: Healthy subjects (n = 171) 14-93 years of age were examined with transverse relaxation rate (R(2)) and four diffusion tensor imaging measures (fractional anisotropy [FA] and radial, axial, and mean diffusivity [RD, AxD, MD, respectively]) of frontal lobe, genu, and splenium of the corpus callosum WM (FWM, GWM, and SWM, respectively). RESULTS: Only R(2) reflected known levels of myelin content with high values in late-myelinating FWM and GWM regions and low ones in early-myelinating SWM. In FWM and GWM, all metrics except FA had significant quadratic components that peaked at different ages (R(2) < RD < MD < AxD), with FWM peaking later than GWM. Factor analysis revealed that, although they defined different factors, R(2) and RD were the metrics most closely associated with each other and differed from AxD, which entered into a third factor. CONCLUSIONS: The R(2) and RD trajectories were most dynamic in late-myelinating regions and reflect age-related differences in myelination, whereas AxD reflects axonal size and extra-axonal space. The FA and MD had limited specificity. The data suggest that the healthy adult brain undergoes continual change driven by development and repair processes devoted to creating and maintaining synchronous function among neural networks on which optimal cognition and behavior depend.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely-but not only-transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
    Proceedings of the National Academy of Sciences 11/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes of white matter (WM) microstructure have been proposed as structural biomarkers of bipolar disorder (BD). The chronotherapeutic combination of repeated total sleep deprivation and morning light therapy (TSD+LT) can acutely reverse depressive symptoms in approximately 60% of patients, and it has been proposed as a model antidepressant treatment to investigate the neurobiological correlates of rapid antidepressant response. We tested if baseline DTI measures can predict response to treatment in 70 in-patients affected by a major depressive episode in the course of BD, treated with chronotherapeutics for one week. We performed whole-brain tract-based spatial statistics with threshold-free cluster enhancement for the DTI measures of WM microstructure integrity: fractional anisotropy, axial, radial, and mean diffusivity. Increased mean and radial water diffusivity correlated with poor antidepressant response to TSD+LT in core WM tracts which are crucial for the functional integrity of the brain, including corpus callosum, corona radiata, cingulum bundle, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and thalamic radiation. Limitations include issues such as generalizability, possible population stratification, medications and their effects on DTI measures, and no placebo control for chronotherapeutics. We could not consider other factors such as gene-environment interactions. The association of increased radial and mean diffusivity with poor response to chronotherapeutic treatment warrants interest for the study of DTI measures of WM microstructure as markers for treatment response in bipolar depression. Copyright © 2014 Elsevier B.V. All rights reserved.
    Journal of Affective Disorders 11/2014; 174C:233-240. · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
    Frontiers in Pediatrics 11/2014; 2:123.