Article

Induction of osteoclastogenesis in an in vitro model of Gaucher disease is mediated by T cells via TNF-α.

LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900) Argentina.
Gene (Impact Factor: 2.08). 11/2012; 509(1):51-9. DOI: 10.1016/j.gene.2012.07.071
Source: PubMed

ABSTRACT Gaucher disease is a lysosomal storage disorder caused by deficiency of glucocerebrosidase enzymatic activity leading to accumulation of its substrate glucocerebrosidase mainly in macrophages. Skeletal disorder of Gaucher disease is the major cause of morbidity and is highly refractory to enzyme replacement therapy. However, pathological mechanisms of bone alterations in Gaucher disease are still poorly understood. We hypothesized that cellular alteration in Gaucher disease produces a proinflammatory milieu leading to bone destruction through enhancement of monocyte differentiation to osteoclasts and osteoclasts resorption activity. Against this background we decided to investigate in an in vitro chemical model of Gaucher disease, the capacity of secreted soluble mediators to induce osteoclastogenesis, and the mechanism responsible for this phenomena. We demonstrated that soluble factors produced by CBE-treated PBMC induced differentiation of osteoclasts precursors into mature and active osteoclasts that express chitotriosidase and secrete proinflammatory cytokines. We also showed a role of TNF-α in promoting osteoclastogenesis in Gaucher disease chemical model. To analyze the biological relevance of T cells in osteoclastogenesis of Gaucher disease, we investigated this process in T cell-depleted PBMC cultures. The findings suggest that T cells play a role in osteoclast formation in Gaucher disease. In conclusion, our data suggests that in vitro GCASE deficiency, along with concomitant glucosylceramide accumulation, generates a state of osteoclastogenesis mediated in part by pro-resorptive cytokines, especially TNF-α. Moreover, T cells are involved in osteoclastogenesis in Gaucher disease chemical model.

Download full-text

Full-text

Available from: Victoria Delpino, Sep 24, 2014
1 Follower
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian Chitinases consisting of CHIA, CHIT1, CHI3L1, CHI3L2 and CHID1 exerts important biological roles in the monocyte lineage and chronic inflammatory diseases. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, osteoporosis, periodontitis and cancer metastasis. The biologic role of Chitinases in bone resorption is poorly understood. In this study, we evaluated the expression of the Chitinases family during osteoclast differentiation. The expression of CHIA, CHI3L2 and CHID1 resulted unchanged during osteoclast differentiation, whereas CHIT1 and CHI3L1 increased significantly. We also observed thatCHIT1 and CHI3L1 are involved in osteoclast function. Indeed, silencing CHIT1 and CHI3L1 with siRNA resulted in a significant decrease in bone resorption activity. In addition, transfection with CHIT1 or CHI3L1 siRNA and co-transfection with both, decreased the levels of the pro-differentiative marker MMP9. Overall, these discoveries reveal a novel and crucial role for both CHIT1 and CHI3L1 in promoting bone resorption and identify new potential candidate markers for therapeutic targeting.
    Bone 01/2014; 61. DOI:10.1016/j.bone.2014.01.005 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gaucher disease (GD) is caused by mutations in GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. The homeostasis of bone tissue is maintained by the balanced processes of bone resorption by osteoclasts and formation by osteoblasts. We decided to test weather bone resorption and/or bone formation could be altered by the use of a chemical in vitro murine model of Gaucher disease. We used two sources of cells from monocyte/macrophages lineage isolated from normal mice, splenocytes (S) and peritoneal macrophages (PM), and were exposed to CBE, the inhibitor of GCase (S-CBE and PM-CBE, respectively). Addition of both conditioned media (CM) from S-CBE and PM-CBE induced the differentiation of osteoclasts precursors from bone marrow to mature and functional osteoclasts. TNF-α could be one of the factors responsible for this effect. On the other side, addition of CM to an osteoblast cell culture resulted in a reduction in expression of alkaline phosphatase and mineralization process. In conclusion, these results suggest implication of changes in both bone formation and bone resorption and are consistent with the idea that both sides of the homeostatic balance are affected in GD.
    Gene 09/2013; 532(2). DOI:10.1016/j.gene.2013.09.072 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gaucher disease (GD) is an autosomal recessive disorder caused by deficiency of β-glucocerebrosidase. Storage of glucosylceramide in reticuloendothelial cells results in multiorgan pathology including bone disease. Established skeletal disease may remain problematic despite Gaucher-specific treatment. Both osteopenia and osteonecrosis have been described but the underlying pathophysiology, in particular the role of monocyte-derived osteoclasts is not well defined. The objective of this study was to explore the effect of glucocerebrosidase deficiency, inhibition and replacement on osteoclast development and function. In cultures derived from GD patients, or where GBA was chemically inhibited multinucleate giant cells expressing markers of osteoclast differentiation occurred earlier and in greater numbers compared to normal controls and the functional capacity of osteoclasts for bone resorption was enhanced. Increases in osteoclast number and activity correlated with radiological markers of active bone disease. Abnormalities were reversed by addition of specific therapies and were attenuated by co-culture with cells derived from healthy controls (HCs). Numbers of osteoblast lineage cells in the peripheral blood were mismatched to osteoclast precursors indicating uncoupling of osteoblast-osteoclast regulation which may further impact on bone remodelling. Elucidation of the underlying mechanisms of these changes will suggest rational therapies for the most disabling aspect of this condition.
    Blood Cells Molecules and Diseases 05/2013; 51(3). DOI:10.1016/j.bcmd.2013.04.006 · 2.33 Impact Factor