Article

HAT-P-10b: A Light and Moderately Hot Jupiter Transiting A K Dwarf

The Astrophysical Journal (Impact Factor: 6.28). 04/2009; 696(2):1950. DOI: 10.1088/0004-637X/696/2/1950
Source: arXiv

ABSTRACT We report on the discovery of HAT-P-10b, one of the lowest mass (0.487 ± 0.018 M J) transiting extrasolar planets (TEPs) discovered to date by transit searches. HAT-P-10b orbits the moderately bright V = 11.89 K dwarf GSC 02340-01714, with a period P = 3.7224747 ± 0.0000065 days, transit epoch Tc = 2454759.68683 ± 0.00016 (BJD), and duration 0.1090 ± 0.0008 days. HAT-P-10b has a radius of 1.005+0.032 –0.027 R J yielding a mean density of 0.594 ± 0.052 g cm–3. Comparing these observations with recent theoretical models we find that HAT-P-10b is consistent with a ~4.5 Gyr, almost pure hydrogen and helium gas giant planet with a 10 M ⊕ core. With an equilibrium temperature of T eq = 1020 ± 17 K, HAT-P-10b is one of the coldest TEPs. Curiously, its Safronov number θ = 0.053 ± 0.002 falls close to the dividing line between the two suggested TEP populations.

Full-text

Available from: Geza Kovacs, Jun 03, 2015
0 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51% ± 10% for companions with masses between 1-13 M Jup and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
    The Astrophysical Journal 03/2014; 785(2). DOI:10.1088/0004-637X/785/2/126 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transiting exoplanetary system WASP-11/HAT-P-10 was observed using the CCD camera at Yunnan Observatories, China from 2008 to 2011, and four new transit light curves were obtained. Combined with published radial velocity measurements, the new transit light curves are analyzed along with available photometric data from the literature using the Markov Chain Monte Carlo technique, and the refined physical parameters of the system are derived, which are compatible with the results of two discovery groups, respectively. The planet mass is Mp = 0.526 ± 0.019 MJ, which is the same as West et al.'s value, and more accurately, the planet radius Rp = 0.999 is identical to the value of Bakos et al. The new result confirms that the planet orbit is circular. By collecting 19 available mid-transit epochs with higher precision, we make an orbital period analysis for WASP-11b/HAT-P-10b, and derive a new value for its orbital period, P = 3.72247669 days. Through an (O – C) study based on these mid-transit epochs, no obvious transit timing variation signal can be found for this system during 2008-2012.
    The Astronomical Journal 03/2014; 147(4):92. DOI:10.1088/0004-6256/147/4/92 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we search for distant massive companions to known transiting hot Jupiters that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 hot Jupiters obtained using the Keck HIRES instrument, and use these observations to search for long-term radial velocity accelerations. We find new, statistically significant accelerations in seven systems, including: HAT-P-10, HAT-P-20, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 AO imaging data to place constraints on the allowed masses and orbital periods of the companions. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the short-period hot Jupiters in these systems, making them candidates for influencing the orbital evolution of the inner hot Jupiters. They also appear to occur preferentially in systems with more metal-rich host stars, and with typical orbital separations that are larger than those of multi-planet systems without hot Jupiters. We estimate a total occurrence rate of 55% +11% / -10% for companions with masses between 1-13 M_Jup and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions in hot Jupiter systems with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the hot Jupiters included in our survey. [Abridged]