Article

HAT-P-10b: A Light and Moderately Hot Jupiter Transiting A K Dwarf

The Astrophysical Journal (Impact Factor: 6.73). 04/2009; 696(2):1950. DOI: 10.1088/0004-637X/696/2/1950
Source: arXiv

ABSTRACT We report on the discovery of HAT-P-10b, one of the lowest mass (0.487 ± 0.018 M J) transiting extrasolar planets (TEPs) discovered to date by transit searches. HAT-P-10b orbits the moderately bright V = 11.89 K dwarf GSC 02340-01714, with a period P = 3.7224747 ± 0.0000065 days, transit epoch Tc = 2454759.68683 ± 0.00016 (BJD), and duration 0.1090 ± 0.0008 days. HAT-P-10b has a radius of 1.005+0.032 –0.027 R J yielding a mean density of 0.594 ± 0.052 g cm–3. Comparing these observations with recent theoretical models we find that HAT-P-10b is consistent with a ~4.5 Gyr, almost pure hydrogen and helium gas giant planet with a 10 M ⊕ core. With an equilibrium temperature of T eq = 1020 ± 17 K, HAT-P-10b is one of the coldest TEPs. Curiously, its Safronov number θ = 0.053 ± 0.002 falls close to the dividing line between the two suggested TEP populations.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, Knutson et al. have demonstrated a correlation between the presence of temperature inversions in the atmospheres of hot Jupiters and the chromospheric activity levels of the host stars. Here, we show that there is also a correlation, with greater than 99.5% confidence, between the surface gravity of hot Jupiters and the activity levels of the host stars, such that high surface gravity planets tend be found around high-activity stars. We also find a less significant positive correlation between planet mass and chromospheric activity, but no significant correlation is seen between planet radius and chromospheric activity. We consider the possibility that this may be due to an observational bias against detecting lower mass planets around higher activity stars, but conclude that this bias is only likely to affect the detection of planets much smaller than those considered here. Finally, we speculate on physical origins for the correlation—including the possibility that the effect of stellar insolation on planetary radii has been significantly underestimated, that strong UV flux evaporates planetary atmospheres, or that high-mass hot Jupiters induce activity in their host stars—but do not find any of these hypotheses to be particularly compelling.
    The Astrophysical Journal Letters 06/2010; 717(2):L138. · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of HAT-P-8b, a transiting planet with mass M p = 1.52+0.18 –0.16 M J, radius R p = 1.50+0.08 –0.06 R J, and photometric period P = 3.076 days. HAT-P-8b has a somewhat inflated radius for its mass, and a somewhat large mass for its period. The host star is a solar-metallicity F dwarf, with mass M = 1.28 ± 0.04 M ☉ and R = 1.58+0.08 –0.06 R ☉. HAT-P-8b was initially identified as one of the 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation for 28 of the candidates. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are single-lined and six are double-lined.
    The Astrophysical Journal 09/2009; 704(2):1107. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stellar properties are measured for a large set of Kepler Mission exoplanet candidate host stars. Most of these stars are fainter than 14th magnitude, in contrast to other spectroscopic follow-up studies. This sample includes many high-priority Earth-sized candidate planets. A set of model spectra are fitted to R~3000 optical spectra of 268 stars to improve estimates of Teff, log(g), and [Fe/H] for the dwarfs in the range 4750K<Teff<7200K. These stellar properties are used to find new stellar radii and, in turn, new radius estimates for the candidate planets. The result of improved stellar characteristics is a more accurate representation of this Kepler exoplanet sample and identification of promising candidates for more detailed study. This stellar sample, particularly among stars with Teff>5200K, includes a greater number of relatively evolved stars with larger radii than assumed by the mission on the basis of multi-color broadband photometry. About 26% of the modelled stars require radii to be revised upwards by a factor of 1.35 or greater, and modelling of 87% of the stars suggest some increase in radius. The sample presented here also exhibits a change in the incidence of planets larger than 3-4 Earth radii as a function of metallicity. Once [Fe/H] increases to >=-0.05, large planets suddenly appear in the sample while smaller planets are found orbiting stars with a wider range of metallicity. The modelled stellar spectra, as well as an additional 84 stars of mostly lower effective temperatures, are made available to the community.
    The Astrophysical Journal 05/2013; 771(2). · 6.73 Impact Factor

Full-text (3 Sources)

View
25 Downloads
Available from
Jun 4, 2014