Neutral Pion Emission from Accelerated Protons in the Supernova Remnant W44

The Astrophysical Journal Letters (Impact Factor: 5.6). 11/2011; 742(2):L30. DOI: 10.1088/2041-8205/742/2/L30
Source: arXiv

ABSTRACT We present the AGILE gamma-ray observations in the energy range 50 MeV-10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (~20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [S II] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; and (3) the hadron energy spectrum is well described by a power law (with index s = 3.0 ± 0.1) and a low-energy cut-off at Ec = 6 ± 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review we discuss some observational aspects and theoretical models of astrophysical collisionless shocks in partly ionized plasma with the presence of non-thermal components. A specific feature of fast strong collisionless shocks is their ability to accelerate energetic particles that can modify the shock upstream flow and form the shock precursors. We discuss the effects of energetic particle acceleration and associated magnetic field amplification and decay in the extended shock precursors on the line and continuum multi-wavelength emission spectra of the shocks. Both Balmer-type and radiative astrophysical shocks are discussed in connection to supernova remnants interacting with partially neutral clouds. Quantitative models described in the review predict a number of observable line-like emission features that can be used to reveal the physical state of the matter in the shock precursors and the character of nonthermal processes in the shocks. Implications of recent progress of gamma-ray observations of supernova remnants in molecular clouds are highlighted.
    Space Science Reviews 05/2013; · 5.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these obser- vations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.
    Space Science Reviews 06/2012; 173(1-4). · 5.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New generational very-high-energy telescope arrays have been detecting more than 120 TeV {\gamma}-ray sources. Multi-wavelength observations on these Gamma-ray sources have proven to be robust in shedding light on their nature. The coming radio telescope arrays like ASKAP and FAST may find more faint (extended) radio sources due to their better sensitivities and resolutions, might identify more previously un-identified {\gamma}-ray sources and set many new targets for future deep surveys by very-high-energy ground-based telescopes like LHAASO. We in the paper summarize a list of known Galactic {\gamma}-ray Supernova Remnants (SNRs) with or without radio emissions so far, which includes some SNRs deserving top priority for future multi-wavelength observations.
    Science China: Physics, Mechanics and Astronomy 01/2013; 56(8). · 0.86 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014