Evidence of Widespread Hot Plasma in a Nonflaring Coronal Active Region from Hinode/X-Ray Telescope

The Astrophysical Journal (Impact Factor: 6.28). 05/2009; 698(1):756. DOI: 10.1088/0004-637X/698/1/756
Source: arXiv

ABSTRACT Nanoflares, short and intense heat pulses within spatially unresolved magnetic strands, are now considered a leading candidate to solve the coronal heating problem. However, the frequent occurrence of nanoflares requires that flare-hot plasma be present in the corona at all times. Its detection has proved elusive until now, in part because the intensities are predicted to be very faint. Here, we report on the analysis of an active region observed with five filters by Hinode/X-Ray Telescope (XRT) in 2006 November. We have used the filter ratio method to derive maps of temperature and emission measure (EM) both in soft and hard ratios. These maps are approximate in that the plasma is assumed to be isothermal along each line of sight. Nonetheless, the hardest available ratio reveals the clear presence of plasma around 10 MK. To obtain more detailed information about the plasma properties, we have performed Monte Carlo simulations assuming a variety of nonisothermal EM distributions along the lines of sight. We find that the observed filter ratios imply bi-modal distributions consisting of a strong cool (log T ~ 6.3 – 6.5) component and a weaker (few percent) and hotter (6.6 < log T < 7.2) component. The data are consistent with bi-modal distributions along all lines of sight, i.e., throughout the active region. We also find that the isothermal temperature inferred from a filter ratio depends sensitively on the precise temperature of the cool component. A slight shift of this component can cause the hot component to be obscured in a hard ratio measurement. Consequently, temperature maps made in hard and soft ratios tend to be anti-correlated. We conclude that this observation supports the presence of widespread nanoflaring activity in the active region.

Download full-text


Available from: Fabio Reale, Jun 21, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.
    Living Reviews in Solar Physics 10/2010; DOI:10.12942/lrsp-2010-5 · 11.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies a very hot plasma component has been diagnosed in solar active regions through the images in three different narrow-band channels of SDO/AIA. This diagnostic from EUV imaging data has also been supported by the matching morphology of the emission in the hot Ca XVII line, as observed with Hinode/EIS. This evidence is debated because of unknown distribution of the emission measure along the line of sight. Here we investigate in detail the thermal distribution of one of such regions using EUV spectroscopic data. In an active region observed with SDO/AIA, Hinode/EIS and XRT, we select a subregion with a very hot plasma component and another cooler one for comparison. The average spectrum is extracted for both, and 14 intense lines are selected for analysis, that probe the 5.5 < log T < 7 temperature range uniformly. From these lines the emission measure distributions are reconstructed with the MCMC method. Results are cross-checked with comparison of the two subregions, with a different inversion method, with the morphology of the images, and with the addition of fluxes measured with from narrow and broad-band imagers. We find that, whereas the cool region has a flat and featureless distribution that drops at temperature log T >= 6.3, the distribution of the hot region shows a well-defined peak at log T = 6.6 and gradually decreasing trends on both sides, thus supporting the very hot nature of the hot component diagnosed with imagers. The other cross-checks are consistent with this result. This study provides a completion of the analysis of active region components, and the resulting scenario supports the presence of a minor very hot plasma component in the core, with temperatures log T > 6.6.
    Astronomy and Astrophysics 02/2014; 564. DOI:10.1051/0004-6361/201322998 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T 8.9 MK) and Fe XII at 592.6 Å (T 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec2 (2.58 × 109 km2, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ~0.076 just outside the AR core and ~0.59 in the core.
    The Astrophysical Journal 07/2014; 790(2):112. DOI:10.1088/0004-637X/790/2/112 · 6.28 Impact Factor