Article

γ-Ray and Parsec-scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

The Astrophysical Journal (Impact Factor: 6.28). 11/2011; 742(1):27. DOI: 10.1088/0004-637X/742/1/27

ABSTRACT We investigate the Fermi Large Area Telescope γ-ray and 15 GHz Very Long Baseline Array radio properties of a joint γ-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination –30° during this period, and thus probes the full range of γ-ray loudness (γ-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing γ-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the γ-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-γ-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.

Download full-text

Full-text

Available from: Gudlaugur Jóhannesson, Dec 20, 2013
0 Followers
 · 
169 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and gamma-ray emission in a large sample of blazars. We find that the gamma-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within 2 months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong gamma-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of gamma-ray emission.
    The Astrophysical Journal 04/2012; 754(1). DOI:10.1088/0004-637X/754/1/23 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: I review here the present observational efforts to study parsec-scale radio jets in active galactic nuclei with very-long-baseline interferometry (VLBI) as related to the new window to the Universe opened by the LAT instrument on-board the Fermi Gamma-Ray Space Telescope. I describe the goals and achievements of those radio studies, which aim to probe the emission properties, morphological changes and related kinematics, magnetic fields from the linear and circular polarization, etc., and I put those in the context of the radio--gamma-ray connection. Both statistical studies based on radio surveys and individual studies on selected sources are reported. Those should shed some light in the open questions about the nature of emission in blazars.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shocks in jets and hot spots of Active Galactic Nuclei (AGN) are one prominent class of possible sources of very high energy cosmic ray particles (above 10^18eV). Extrapolating their spectrum to their plausible injection energy from some shock, implies an enormous hidden energy for a spectrum of index ~-2. Some analyzes suggest the particles' injection spectrum at source to be as steep as -2.4 to -2.7, making the problem much worse, by a factor of order 10^6. Nevertheless, it seems implausible that more than at the very best 1/3 of the jet energy, goes into the required flux of energetic particles thus, one would need to allow for the possibility that there is an energy problem, which we would like to address in this work. Sequences of consecutive oblique shock features, or conical shocks, have been theorized and eventually observed in many AGN jets. Based on that, we use by analogy the 'Comptonisation' effect and we propose a scenario of a single injection of particles which are accelerated consecutively by several oblique shocks along the axis of an AGN jet. We use detailed test-particle approximation Monte Carlo simulations in order to calculate particle spectra by acceleration at such a shock pattern while monitoring the efficiency of acceleration, calculating differential spectra. We find that the first shock of a sequence of oblique shocks, establishes a low energy power-law spectrum with ~E^-2.7. The consecutive shocks push the spectrum up in energy, rendering flatter distributions with steep cut-offs and characteristic depletion at low energies, an effect which could explain the puzzling apparent extra source power as well as the flat or inverted spectra from distant flaring sources.
    Astronomy and Astrophysics 07/2012; 556. DOI:10.1051/0004-6361/201016299 · 4.48 Impact Factor
Show more