Sedimentation and multi-phase equilibria in mixtures of platelets and ideal polymer

Utrecht University, Utrecht, Utrecht, Netherlands
EPL (Europhysics Letters) (Impact Factor: 2.1). 01/2007; 66(1):125. DOI: 10.1209/epl/i2003-10140-1
Source: OAI


The role of gravity in the phase behaviour of mixtures of hard colloidal plates without and with non-adsorbing ideal polymer is explored theoretically. By analyzing the (macroscopic) osmotic equilibrium conditions, we show that sedimentation of the colloidal platelets is significant on a height range of even a centimeter. Gravity enables the system to explore a large density range within the height of a test tube which may give rise to the simultaneous presence of multiple phases. As to plate-polymer mixtures, it is shown that sedimentation may lead to a four-phase equilibrium involving an isotropic gas and liquid phase, nematic and columnar phase. The phenomenon has been observed experimentally in systems of colloidal gibbsite platelets mixed with PDMS polymer.

Full-text preview

Available from:
  • Source
    • "We have checked that the results from our approach, using the free-volume theory of Ref. [25] to describe the bulk phase diagram of the mixture, match those of the effective one-component approach by Wensink et. al [26] and the experiments by van der Kooij et. al [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The observation of stacks of distinct layers in a colloidal or liquid mixture in sedimentation-diffusion equilibrium is a striking consequence of bulk phase separation. Drawing quantitative conclusions about the phase diagram is, however, very delicate. Here we introduce the Legendre transform of the chemical potential representation of the bulk phase diagram to obtain a unique stacking diagram of all possible stacks under gravity. Simple bulk phase diagrams generically lead to complex stacking diagrams. We apply the theory to a binary hard core platelet mixture with only two-phase bulk coexistence, and find that the stacking diagram contains six types of stacks with up to four distinct layers. These results can be tested experimentally in colloidal platelet mixtures. In general, an extended Gibbs phase rule determines the maximum number of sedimented layers to be $3+2(n_b-1)+n_i$, where $n_b$ is the number of binodals and $n_i$ is the number of their inflection points.
    Soft Matter 05/2013; 9:8636. DOI:10.1039/C3SM51491A · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The results of an experimental study focused on the effect of added silica nanospheres on the structure of an aqueous suspension of disc-shaped kaolinite particles are presented. In the absence of any additives, kaolinite particles rapidly aggregate and settle. When only nanoparticles were added to a 14% vol. kaolinite suspension, some stabilization was observed, although a thick, fluid-like sediment still formed. Adding both nanoparticles and salt (NaCl or KCl), however, caused the entire suspension to transition into a solid material that was strong enough to actually be sliced. A phase diagram was constructed showing the concentration of salt and nanoparticles needed to produce this transition. With smaller nanoparticles, the transition occurred at much lower nanoparticle volume fractions. Scanning electron micrographs of both the sediment and solid-like material, obtained by cryogenic drying, showed that the latter consisted of a porous, 'sponge-like' structure. The characteristic size of the pores decreased as the number density of the added nanoparticles increased. Although the nanoparticles were not visible in the SEM images, it is believed that they had separated into the pores of the solid-like material. While a similar type of transition could be produced in suspensions containing only the silica nanospheres, the structure and flow behavior of this material were markedly different from that obtained with the added clay.
    Journal of Colloid and Interface Science 06/2006; 297(1):161-9. DOI:10.1016/j.jcis.2005.10.022 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the equilibrium sediment of a multicomponent system of charged colloids using primitive model Monte Carlo simulations, which include counterions explicitly. We find separation of the different colloidal components into almost pure layers, where colloids with large charge-to-mass ratio sediment higher in the sample. This effect appears due to a competition between ionic entropy, gravitational energy, and electrostatic energy. Our simulations provide a direct confirmation of recent theoretical predictions on the sedimentation of multicomponent mixtures of charged colloids in regimes with relatively low total densities and low colloidal charges. To explore the limitations of the theory we perform simulations at higher total densities for monodisperse and multicomponent systems and at stronger electrostatic couplings by increasing the colloidal charge for monodisperse suspensions. We find good agreement between theory and simulation when the colloidal charge is increased in the monodisperse case. However, we find deviations between simulations and theory upon increasing the total densities in the monodisperse and multicomponent systems. The density profiles obtained from simulations are more homogeneous than those predicted by theory. The spontaneous formation of layered structures predicted by the theory and found by simulation can serve as a useful tool to separate different components from a mixture of charged colloids.
    Physical Review E 07/2006; 73(6). DOI:10.1103/PhysRevE.73.061402 · 2.29 Impact Factor
Show more