Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

Journal of Physics Conference Series 11/2009; 190(1):012085. DOI: 10.1088/1742-6596/190/1/012085
Source: arXiv

ABSTRACT The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insulating state of magnetite (Fe$_{3}$O$_{4}$) can be disrupted by a sufficiently large dc electric field. Pulsed measurements are used to examine the kinetics of this transition. Histograms of the switching voltage show a transition width that broadens as temperature is decreased, consistent with trends seen in other systems involving "unpinning" in the presence of disorder. The switching distributions are also modified by an external magnetic field on a scale comparable to that required to reorient the magnetization.
    New Journal of Physics 01/2012; 14(1). · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here the correlation between the chemical shift in X-ray absorption spectroscopy, the geometrical structure and the formal valence state of the Mn atom in mixed-valence manganites are discussed. It is shown that this empirical correlation can be reliably used to determine the formal valence of Mn, using either X-ray absorption spectroscopy or resonant X-ray scattering techniques. The difficulties in obtaining a reliable comparison between experimental XANES spectra and theoretical simulations on an absolute energy scale are revealed. It is concluded that the contributions from the electronic occupation and the local structure to the XANES spectra cannot be separated either experimentally or theoretically. In this way the geometrical and electronic structure of the Mn atom in mixed-valence manganites cannot be described as a bimodal distribution of the formal integer Mn(3+) and Mn(4+) valence states corresponding to the undoped references.
    Journal of Synchrotron Radiation 05/2010; 17(3):386-92. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high-resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes― Δ2(B2u), X1 +(B2u) and X1 +(A)―acting on the oxygen atoms accounts for the structural transformation. The Δ2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc plane only) on one Mn site (Mn1), whereas the two X1 + modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1 + modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Δ2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.
    Physical review. B, Condensed matter 02/2011; 83(18). · 3.77 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014