Article

Modeling the Hubble Space Telescope Ultraviolet and Optical Spectrum of Spot 1 on the Circumstellar Ring of SN 1987A

The Astrophysical Journal (Impact Factor: 6.73). 12/2008; 572(2):906. DOI: 10.1086/340453
Source: arXiv

ABSTRACT We report and interpret Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) long-slit observations of the optical and ultraviolet (1150-10270 Å) emission line spectra of the rapidly brightening spot 1 on the equatorial ring of SN 1987A between 1997 September and 1999 October (days 3869-4606 after outburst). The emission is caused by radiative shocks created where the supernova blast wave strikes dense gas protruding inward from the equatorial ring. We measure and tabulate line identifications, fluxes, and, in some cases, line widths and shifts. We compute flux correction factors to account for substantial interstellar line absorption of several emission lines. Nebular analysis shows that optical emission lines come from a region of cool (Te ≈ 104 K) and dense (ne ≈ 106 cm-3) gas in the compressed photoionized layer behind the radiative shock. The observed line widths indicate that only shocks with shock velocities Vs < 250 km s-1 have become radiative, while line ratios indicate that much of the emission must have come from yet slower (Vs 135 km s-1) shocks. Such slow shocks can be present only if the protrusion has atomic density n 3 × 104 cm-3, somewhat higher than that of the circumstellar ring. We are able to fit the UV fluxes with an idealized radiative shock model consisting of two shocks (Vs = 135 and 250 km s-1). The observed UV flux increase with time can be explained by the increase in shock surface areas as the blast wave overtakes more of the protrusion. The observed flux ratios of optical to highly ionized UV lines are greater by a factor of ~2-3 than predictions from the radiative shock models, and we discuss the possible causes. We also present models for the observed Hα line widths and profiles, which suggest that a chaotic flow exists in the photoionized regions of these shocks. We discuss what can be learned with future observations of all the spots present on the equatorial ring.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present near- and mid-infrared observations of the pulsar-wind nebula (PWN) SNR B0540–69.3 and its associated supernova remnant made with the Spitzer Space Telescope. We report detections of the PWN with all four IRAC bands, the 24 μm band of MIPS, and the Infrared Spectrograph (IRS). We find no evidence of IR emission from the X-ray/radio shell surrounding the PWN resulting from the forward shock of the supernova blast wave. The flux of the PWN itself is dominated by synchrotron emission at shorter (IRAC) wavelengths, with a warm dust component longward of 20 μm. We show that this dust continuum can be explained by a small amount [~(1–3) × 10−3 M☉] of dust at a temperature of ~50-65 K, heated by the shock wave generated by the PWN being driven into the inner edge of the ejecta. This is evidently dust synthesized in the supernova. We also report the detection of several lines in the spectrum of the PWN and present kinematic information about the PWN as determined from these lines. Kinematics are consistent with previous optical studies of this object. Line strengths are also broadly consistent with what one expects from optical line strengths. We find that lines arise from slow (~20 km s−1) shocks driven into oxygen-rich clumps in the shell swept up by an iron-nickel bubble, which have a density contrast of ~100-200 relative to the bulk of the ejecta, and that faster shocks (~250 km s−1) in the hydrogen envelope are required to heat dust grains to observed temperatures. We infer from estimates of heavy-element ejecta abundances that the progenitor star was likely in the range of 20-25 M☉.
    The Astrophysical Journal 12/2008; 687(2):1054. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-ray binaries are binary star systems in which a compact object (a neutron star or a black hole) and a relatively normal star orbit a common centre of mass. Since the discovery of X-ray binaries with the first X-ray telescopes in the 1960s, astronomers have tried to understand how these bizarre objects behave, and why. Some change in X-ray luminosity by 10^8 orders of magnitude on timescales of days to months due to an increased transfer of mass from the star towards the compact object. Many X-ray binaries are detected at all observable frequencies, from radio to gamma-rays. It has been found that many different sources of emission, which peak at different frequencies, are present in X-ray binary spectra and together they produce the observed broadband spectrum. However, disentangling these components has proved challenging. Much of the work in this thesis concerns disentangling the components that occupy the optical and near-infrared (NIR) region of the spectrum of X-ray binaries; possibly the region in which the relative contributions of the different components are least certain. In particular one component, the synchrotron emission from jets of outflowing matter, is found in this work to contribute ubiquitously to the optical and NIR light of X-ray binaries with relatively faint stars. These results confirm that the jets are powerful and in some of this work, observations of the jets interacting with the surrounding matter are used to infer their power.
    03/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HST images with WFPC2 of the young, oxygen-rich, Crab-like supernova remnant SNR 0540-69.3 in the Large Magellanic Cloud (LMC) reveal details of the emission distribution and the relationship between the expanding ejecta and synchrotron nebula. The emission distributions appear very similar to those seen in the Crab Nebula, with the ejecta located in a thin envelope surrounding the synchrotron nebula. The [O III] emission is more extended than other tracers, forming a faint "skin" around the denser filaments and synchrotron nebula, as also observed in the Crab. The [O III] exhibits somewhat different kinematic structure in long-slit spectra, including a more extended high-velocity emission halo not seen in images. Yet even the fastest expansion speeds in SNR 0540-69.3's halo are slow when compared to most other young supernova remnants, although the Crab Nebula has similar slow expansion speeds. We show a striking correspondence between the morphology of the synchrotron nebula observed in an optical continuum filter with that recently resolved in Chandra X-ray images. We argue that the multicomponent kinematics and filamentary morphology of the optical emission-line features likely result from magnetic Rayleigh-Taylor instabilities that form as the synchrotron nebula expands and sweeps up ejecta, as seen in the Crab Nebula. Our images and spectra help to refine our understanding of SNR 0540-69.3 in several more detailed respects: they confirm the identification of Hα + [N ] in the red spectrum, show that the systemic velocity of SNR 0540-69.3 is not significantly different from that of the LMC, and hint at a lower Ne abundance than the Crab (potentially indicating a more massive progenitor star).
    The Astrophysical Journal 12/2008; 644(1):188. · 6.73 Impact Factor

Full-text (3 Sources)

View
19 Downloads
Available from
Jun 1, 2014