Article

CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—The Hubble Space Telescope Observations, Imaging Data Products, and Mosaics

The Astrophysical Journal Supplement Series (Impact Factor: 14.14). 12/2011; 197(2):36. DOI: 10.1088/0067-0049/197/2/36

ABSTRACT This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

1 Bookmark
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSMOS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
    02/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θEin > 35'' at zs = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ z ~ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
    The Astrophysical Journal Supplement Series 03/2012; 199(2):25. · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new determination of the UV galaxy luminosity function (LF) at redshift z ~ 7 and z ~ 8, and a first estimate at z ~ 9. An accurate determination of the form and evolution of the LF at high z is crucial for improving our knowledge of early galaxy evolution and cosmic reionization. Our analysis exploits fully the new, deepest WFC3/IR imaging from our HST UDF12 campaign, and includes a new, consistent analysis of all appropriate, shallower/wider-area HST data. Our new measurement of the evolving LF at z ~ 7-8 is based on a final catalogue of ~600 galaxies, and involves a step-wise maximum likelihood determination based on the redshift probability distribution for each object; this makes full use of the 11-band imaging now available in the HUDF, including the new UDF12 F140W data, and the deep Spitzer IRAC imaging. The final result is a determination of the z ~ 7 LF extending down to M_UV = -16.75, and the z ~ 8 LF down to M_UV = -17.00. Fitting a Schechter function, we find M* = -19.90 (+0.23/-0.28), log phi* = -2.96 (+0.18/-0.23), and a faint-end slope alpha=-1.90 (+0.14/-0.15) at z~7, and M* = -20.12 (+0.37/-0.48), log phi* = -3.35 (+0.28/-0.47), alpha=-2.02 (+0.22/-0.23) at z~8. These results strengthen suggestions that the evolution at z > 7 is more akin to `density evolution' than the apparent `luminosity evolution' seen at z ~ 5-7. We also provide the first meaningful information on the LF at z ~ 9, explore alternative extrapolations to higher z, and consider the implications for the evolution of UV luminosity density. Finally, we provide catalogues (including z_phot, M_UV and all photometry) for the 100 most robust z~6.5-11.9 galaxies in the HUDF used in this analysis. We discuss our results in the context of earlier work and the results of an independent analysis of the UDF12 data based on colour-colour selection (Schenker et al. 2013).
    Monthly Notices of the Royal Astronomical Society 12/2012; 432(4). · 5.23 Impact Factor

Full-text (4 Sources)

Download
33 Downloads
Available from
Jun 2, 2014