Article

Simultaneous Multi-Wavelength Observations of Sgr A* During 2007 April 1-11

The Astrophysical Journal (Impact Factor: 6.73). 10/2009; 706(1):348. DOI: 10.1088/0004-637X/706/1/348
Source: arXiv

ABSTRACT We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e., centimeter, millimeter, submillimeter, near-IR, and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7 mm) using the Very Long Baseline Array with milliarcsecond spatial resolution indicates the first direct evidence that hourly timescale flares are localized within the inner 30 × 70 Schwarzschild radii of Sgr A*. We also show several cross-correlation plots between near-IR, millimeter, and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to 5 hr. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission initially being optically thick followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission. The time delay measurements support the expansion of hot self-absorbed synchrotron plasma blob and weaken the hot spot model of flare emission. In addition, a simultaneous fit to 43 and 84 GHz light curves, using an adiabatic expansion model of hot plasma, appears to support a power law rather than a relativistic Maxwellian distribution of particles.

0 Bookmarks
 · 
148 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the low angular momentum flow model for Sgr A* using two-dimensional hydrodynamical calculations based on the parameters of the specific angular momentum and total energy estimated in the recent analysis of stellar wind of nearby stars around Sgr A*. The accretion flow with the plausible parameters is non-stationary and an irregularly oscillating shock is formed in the inner region of a few tens to a hundred and sixty Schwarzschild radii. Due to the oscillating shock, the luminosity and the mass-outflow rate are modulated by several per cent to a factor of 5 and a factor of 2-7, respectively, on time-scales of an hour to ten days. The flows are highly advected and the radiative efficiency of the accreting matter into radiation is very low, 10^{-5}--$10^{-3}, and the input accretion rate of 4.0* 10^{-6} solar mass/yr results in the observed luminosities -- 10^{36} erg/s of Sgr A* if a two-temperature model and the synchrotron emission are taken into account. The mass-outflow rate of the gas originating in the post-shock region increases with the increasing input specific angular momentum and ranges from a few to 99 per cent of the input accreting matter, depending on the input angular momentum. The oscillating shock is necessarily triggered if the specific angular momentum and the specific energy belong to or are located just nearby in the range of parameters responsible for a stationary shock in rotating inviscid and adiabatic accretion flow. The time variability may be relevant to the flare activity of Sgr A*.
    Monthly Notices of the Royal Astronomical Society 06/2012; 425(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to $\sim 5-20$\,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.
    The Astronomical Journal 03/2012; 144(1). · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon. Comment: invited talk to appear in "Jets on All Scales", IAU Symposium 275, G.E. Romero, R.A. Sunyaev & T. Belloni, eds., Cambridge University Press, 9 pages, LaTex, 4 figures
    Proceedings of the International Astronomical Union 10/2010;

Full-text (2 Sources)

View
28 Downloads
Available from
May 29, 2014