Complex Molecules in the Hot Core of the Low-Mass Protostar NGC 1333 IRAS 4A

The Astrophysical Journal (Impact Factor: 6.28). 12/2008; 615(1):354. DOI: 10.1086/423952
Source: arXiv

ABSTRACT We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core-like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS 16293-2422. It is therefore likely that compact (a few tens of AU) regions of dense and warm gas, where the chemistry is dominated by the evaporation of grain mantles and where complex molecules are found, are common in low-mass Class 0 sources. Given that the chemical formation timescale is much shorter than the gas hot-core crossing time, it is not clear whether the reported complex molecules are formed on the grain surfaces (first-generation molecules) or in the warm gas by reactions involving the evaporated mantle constituents (second-generation molecules). We do not find evidence for large differences in the molecular abundances, normalized to the formaldehyde abundance, between the two solar-type protostars, suggesting perhaps a common origin.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: The physical origin behind organic emission in embedded low-mass star formation has been fiercely debated in the last two decades. A multitude of scenarios have been proposed, from a hot corino to PDRs on cavity walls to shock excitation. Aims: The aim of this paper is to determine the location and the corresponding physical conditions of the gas responsible for organics emission lines. The outflows around the small protocluster NGC 2071 are an ideal testbed to differentiate between various scenarios. Methods: Using Herschel-HIFI and the SMA, observations of CH3OH, H2CO and CH3CN emission lines over a wide range of excitation energies were obtained. Comparisons to a grid of radiative transfer models provide constraints on the physical conditions. Comparison to H2O line shape is able to trace gas-phase synthesis versus a sputtered origin. Results: Emission of organics originates in three spots: the continuum sources IRS 1 ('B') and IRS 3 ('A') as well as a outflow position ('F'). Densities are above 10$^7$ cm$^{-3}$ and temperatures between 100 to 200 K. CH3OH emission observed with HIFI originates in all three regions and cannot be associated with a single region. Very little organic emission originates outside of these regions. Conclusions: Although the three regions are small (<1,500 AU), gas-phase organics likely originate from sputtering of ices due to outflow activity. The derived high densities (>10$^7$ cm$^{-3}$) are likely a requirement for organic molecules to survive from being destroyed by shock products. The lack of spatially extended emission confirms that organic molecules cannot (re)form through gas-phase synthesis, as opposed to H2O, which shows strong line wing emission. The lack of CH3CN emission at 'F' is evidence for a different history of ice processing due to the absence of a protostar at that location and recent ice mantle evaporation.
    Astronomy and Astrophysics 07/2014; 569. · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subarcsecond images of the rotational line emissions of CCH, CS, H2CO, and CH3OH have been obtained toward the low-mass protostar IRAS 04368+2557 in L1527 as one of the early science projects of the Atacama Large Millimeter/submillimeter Array. The intensity distributions of CCH and CS show a double-peaked structure along the edge-on envelope with a dip toward the protostar position, whereas those of H2CO and CH3OH are centrally peaked. By analyzing the position-velocity diagrams along the envelope, CCH and CS are found to reside mainly in the envelope, where the gas is infalling with conservation of its angular momentum. They are almost absent inward of the centrifugal barrier (a half of the centrifugal radius). Although H2CO exists in the infalling rotating envelope, it also resides in the disk component inside the centrifugal barrier to some extent. On the other hand, CH3OH seems to exist around the centrifugal barrier and in the disk component. Hence, the drastic chemical change occurs at the centrifugal barrier. A discontinuous infalling motion as well as the gas-grain interaction would be responsible for the chemical change. This result will put an important constraint on initial chemical compositions for chemical evolution of protostellar disks.
    The Astrophysical Journal Letters 08/2014; 791(2):L38. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30 m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH3CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH3OH vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH3CN, HCOOCH3, CH3OCH3, and CH3CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH3OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.
    The Astrophysical Journal 05/2014; 788(1):68. · 6.28 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014