Article

The Relationship between Working Memory Storage and Elevated Activity as Measured with Functional Magnetic Resonance Imaging.

Departments of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
Journal of Neuroscience (Impact Factor: 6.75). 09/2012; 32(38):12990-8. DOI: 10.1523/JNEUROSCI.1892-12.2012
Source: PubMed

ABSTRACT Does the sustained, elevated neural activity observed during working memory tasks reflect the short-term retention of information? Functional magnetic resonance imaging (fMRI) data of delayed recognition of visual motion in human participants were analyzed with two methods: a general linear model (GLM) and multivoxel pattern analysis. Although the GLM identified sustained, elevated delay-period activity in superior and lateral frontal cortex and in intraparietal sulcus, pattern classifiers were unable to recover trial-specific stimulus information from these delay-active regions. The converse-no sustained, elevated delay-period activity but successful classification of trial-specific stimulus information-was true of posterior visual regions, including area MT+ (which contains both middle temporal area and medial superior temporal area) and calcarine and pericalcarine cortex. In contrast to stimulus information, pattern classifiers were able to extract trial-specific task instruction-related information from frontal and parietal areas showing elevated delay-period activity. Thus, the elevated delay-period activity that is measured with fMRI may reflect processes other than the storage, per se, of trial-specific stimulus information. It may be that the short-term storage of stimulus information is represented in patterns of (statistically) "subthreshold" activity distributed across regions of low-level sensory cortex that univariate methods cannot detect.

1 Bookmark
 · 
181 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.
    PLoS ONE 09/2014; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conscious processing is generally seen as required for flexible and willful actions, as well as for tasks that require durable information maintenance. Here we present research that questions the assumption that only consciously perceived information is durable (>500 ms). Using the attentional blink (AB) phenomenon, we rendered otherwise relatively clearly perceived letters non-conscious. In a first experiment we systematically manipulated the delay between stimulus presentation and response, for the purpose of estimating the durability of non-conscious perceptual representations. For items reported not seen, we found that behavioral performance was better than chance across intervals up to 15 s. In a second experiment we used fMRI to investigate the neural correlates underlying the maintenance of non-conscious perceptual representations. Critically, the relatively long delay period demonstrated in experiment 1 enabled isolation of the signal change specifically related to the maintenance period, separate from stimulus presentation and response. We found sustained BOLD signal change in the right mid-lateral prefrontal cortex, orbitofrontal cortex, and crus II of the cerebellum during maintenance of non-consciously perceived information. These findings are consistent with the controversial claim that working-memory mechanisms are involved in the short-term maintenance of non-conscious perceptual representations.
    Frontiers in Human Neuroscience 11/2014; 8:938: 1-10. · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the nature of the bandwidth limit in the consolidation of visual information into visual short-term memory. In the first two experiments, we examined whether previous results showing differential consolidation bandwidth for color and orientation resulted from methodological differences by testing the consolidation of color information with methods used in prior orientation experiments. We briefly presented two color patches with masks, either sequentially or simultaneously, followed by a location cue indicating the target. Participants identified the target color via button-press (Experiment 1) or by clicking a location on a color wheel (Experiment 2). Although these methods have previously demonstrated that two orientations are consolidated in a strictly serial fashion, here we found equivalent performance in the sequential and simultaneous conditions, suggesting that two colors can be consolidated in parallel. To investigate whether this difference resulted from different consolidation mechanisms or a common mechanism with different features consuming different amounts of bandwidth, Experiment 3 presented a color patch and an oriented grating either sequentially or simultaneously. We found a lower performance in the simultaneous than the sequential condition, with orientation showing a larger impairment than color. These results suggest that consolidation of both features share common mechanisms. However, it seems that color requires less information to be encoded than orientation. As a result two colors can be consolidated in parallel without exceeding the bandwidth limit, whereas two orientations or an orientation and a color exceed the bandwidth and appear to be consolidated serially.
    Visual Cognition 08/2014; 22(7):920-947. · 2.05 Impact Factor

Full-text (2 Sources)

Download
6 Downloads
Available from
Aug 5, 2014