Article

Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi.

Department of Molecular Genetics, University of Texas, Southwestern Medical Center, Dallas 75390-9046, USA.
Cell (Impact Factor: 33.12). 12/1999; 99(7):703-12.
Source: PubMed

ABSTRACT Cholesterol homeostasis in animal cells is achieved by regulated cleavage of membrane-bound transcription factors, designated SREBPs. Proteolytic release of the active domains of SREBPs from membranes requires a sterol-sensing protein, SCAP, which forms a complex with SREBPs. In sterol-depleted cells, SCAP escorts SREBPs from ER to Golgi, where SREBPs are cleaved by Site-1 protease (S1P). Sterols block this transport and abolish cleavage. Relocating active S1P from Golgi to ER by treating cells with brefeldin A or by fusing the ER retention signal KDEL to S1P obviates the SCAP requirement and renders cleavage insensitive to sterols. Transport-dependent proteolysis may be a common mechanism to regulate the processing of membrane proteins.

Download full-text

Full-text

Available from: Axel Nohturfft, Mar 05, 2014
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders.
    Cell 11/2011; 147(4):840-52. DOI:10.1016/j.cell.2011.09.045 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to maintain O(2) homeostasis is essential to the survival of all invertebrate and vertebrate species. The transcriptional factor, hypoxia inducible factor 1 (HIF-1), is the principal regulator of oxygen homeostasis. Under hypoxic condition HIF-1 induces the transcription of several hypoxia-responsive genes by binding to hypoxia-response elements (HRE) in their promoters. In recent years it has been demonstrated that hypoxia could be related to metabolic variations such as hyper-cholesterolemia in mouse models. On the basis of this observation, the present study was performed to verify the involvement of HIF-1, and in particular the effect of chemical and environmental induction of HIF-1alpha (the oxygen sensitive isoform) accumulation in 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR, the key and rate limiting enzyme of cholesterol biosynthetic pathway) regulation. Our results show that HIF-1alpha accumulation is able to increase level and activity of HMG-CoAR by stimulating its transcription. The raised transcription of the reductase could be related to an induction by HIF-1alpha even if a parallel action of SREBP-2 actively translocated to nucleus by the increased level of SCAP cannot be excluded.
    Journal of Cellular Biochemistry 06/2008; 104(3):701-9. DOI:10.1002/jcb.21757 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to maintain O 2 homeostasis is essential to the survival of all invertebrate and vertebrate species. The transcriptional factor, hypoxia inducible factor 1 (HIF-1), is the principal regulator of oxygen homeostasis. Under hypoxic condition HIF-1 induces the transcription of several hypoxia-responsive genes by binding to hypoxia-response elements (HRE) in their promoters. In recent years it has been demonstrated that hypoxia could be related to metabolic variations such as hyper-cholesterolemia in mouse models. On the basis of this observation, the present study was performed to verify the involvement of HIF-1, and in particular the effect of chemical and environmental induction of HIF-1a (the oxygen sensitive isoform) accumulation in 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR, the key and rate limiting enzyme of cholesterol biosynthetic pathway) regulation. Our results show that HIF-1a accumulation is able to increase level and activity of HMG-CoAR by stimulating its transcription. The raised transcription of the reductase could be related to an induction by HIF-1a even if a parallel action of SREBP-2 actively translocated to nucleus by the increased level of SCAP cannot be excluded.