Article

Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction

Intestinal Viruses Unit, National Institute for Health and Welfare (THL), P.O. Box 30, FI-00271, Helsinki, Finland.
Diabetologia (Impact Factor: 6.88). 09/2012; 55(12). DOI: 10.1007/s00125-012-2713-z
Source: PubMed

ABSTRACT AIMS/HYPOTHESIS: Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. METHODS: The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. RESULTS: The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. CONCLUSIONS/INTERPRETATION: The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.

0 Bookmarks
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although islet transplantation for individuals with type 1 diabetes has been shown to yield superior blood glucose control, it remains inadequate for long-term control. This is partly due to islet injuries and stresses that can lead to beta cell loss. Inhibition of excess IL-1β activity might minimize islet injuries, thus preserving function. The IL-1 receptor antagonist (IL-1Ra), an endogenous inhibitor of IL-1β, protects islets from cytokine-induced necrosis and apoptosis. Therefore, an imbalance between IL-1β and IL-1Ra might influence the courses of allogeneic and autoimmune responses to islets. Our group previously demonstrated that the circulating serine-protease inhibitor human alpha-1-antitrypsin (hAAT), the levels of which increase in circulation during acute-phase immune responses, exhibits anti-inflammatory and islet-protective properties, as well as immunomodulatory activity. In the present study, we sought to determine whether the pancreatic islet allograft-protective activity of hAAT was mediated by IL-1Ra induction. Our results demonstrated that hAAT led to a 2.04-fold increase in IL-1Ra expression in stimulated macrophages and that hAAT-pre-treated islet grafts exhibited a 4.851-fold increase in IL-1Ra transcript levels, which were associated with a moderate inflammatory profile. Unexpectedly, islets that were isolated from IL-1Ra-knockout mice and pre-treated with hAAT before grafting into wild-type mice yielded an increase in intragraft IL-1Ra expression that was presumably derived from infiltrating host cells, albeit in the absence of hAAT treatment of the host. Indeed, hAAT-pre-treated islets generated hAAT-free conditioned medium that could induce IL-1Ra production in cultured macrophages. Finally, we demonstrated that hAAT promoted a distinct phosphorylation and nuclear translocation pattern for p65, a key transcription factor required for IL-1Ra expression.
    04/2014; 11(4):377-86. DOI:10.1038/cmi.2014.17
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Type 1 diabetes (T1D) results from the immune-mediated destruction of pancreatic insulin-producing cells because of the interaction among genetic susceptibility, the immune system and environmental factor(s). A possible role of viral infections in T1D pathogenesis has been hypothesized for some time; however, only in the most recent years, studies performed at the molecular and cellular level are starting to shed light on this issue. RECENT FINDINGS: Studies in animal models and in man have shown that viruses can indeed infect pancreatic beta-cells, inducing islet inflammation and functional damage. In addition, recent in-situ investigations performed on pancreatic tissue samples have provided evidence that in addition to adaptive immune response, innate immunity is involved in T1D pathogenesis and the whole pancreas (not only its endocrine portion) is infiltrated by immune-mediated phenomena. SUMMARY: The established role of inflammation in the insulitic process and the increasing evidence in support of the contribution of viral infections to a proinflammatory islet scenario are strongly suggestive that viruses may indeed contribute to beta-cell damage and dysfunction, thus setting the stage for the design of antiviral strategies (e.g. vaccines and antiviral drugs) aimed at protecting the beta-cells.
    Current opinion in endocrinology, diabetes, and obesity 06/2013; DOI:10.1097/MED.0b013e328362a7d7 · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three large-scale Echovirus (E) epidemics (E4,E16,E30), each differently associated to the acute development of diabetes related autoantibodies, have been documented in Cuba. The prevalence of islet cell autoantibodies was moderate during the E4 epidemic but high in the E16 and E30 epidemic. The aim of this study was to evaluate the effect of epidemic strains of echovirus on beta-cell lysis, beta-cell function and innate immunity gene expression in primary human pancreatic islets. Human islets from non-diabetic donors (n = 7) were infected with the virus strains E4, E16 and E30, all isolated from patients with aseptic meningitis who seroconverted to islet cell antibody positivity. Viral replication, degree of cytolysis, insulin release in response to high glucose as well as mRNA expression of innate immunity genes (IFN-b, RANTES, RIG-I, MDA5, TLR3 and OAS) were measured. The strains of E16 and E30 did replicate well in all islets examined, resulting in marked cytotoxic effects. E4 did not cause any effects on cell lysis, however it was able to replicate in 2 out of 7 islet donors. Beta-cell function was hampered in all infected islets (P<0.05); however the effect of E16 and E30 on insulin secretion appeared to be higher than the strain of E4. TLR3 and IFN-beta mRNA expression increased significantly following infection with E16 and E30 (P<0.033 and P<0.039 respectively). In contrast, the expression of none of the innate immunity genes studied was altered in E4-infected islets. These findings suggest that the extent of the epidemic-associated islet autoimmunity may depend on the ability of the viral strains to damage islet cells and induce pro-inflammatory innate immune responses within the infected islets.
    PLoS ONE 11/2013; 8(11):e77850. DOI:10.1371/journal.pone.0077850 · 3.53 Impact Factor

Full-text

Download
0 Downloads
Available from
Feb 23, 2015

Teemu Smura