Article

Autophagy and neuronal cell death in neurological disorders.

Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962.
Cold Spring Harbor perspectives in biology (Impact Factor: 8.23). 09/2012; 4(10). DOI: 10.1101/cshperspect.a008839
Source: PubMed

ABSTRACT Autophagy is implicated in the pathogenesis of major neurodegenerative disorders although concepts about how it influences these diseases are still evolving. Once proposed to be mainly an alternative cell death pathway, autophagy is now widely viewed as both a vital homeostatic mechanism in healthy cells and as an important cytoprotective response mobilized in the face of aging- and disease-related metabolic challenges. In Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and other diseases, impairment at different stages of autophagy leads to the buildup of pathogenic proteins and damaged organelles, while defeating autophagy's crucial prosurvival and antiapoptotic effects on neurons. The differences in the location of defects within the autophagy pathway and their molecular basis influence the pattern and pace of neuronal cell death in the various neurological disorders. Future therapeutic strategies for these disorders will be guided in part by understanding the manifold impact of autophagy disruption on neurodegenerative diseases.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.
    PLoS ONE 12/2014; 9(12):e116565. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia (SCZ) is a complex disease that has been regarded as a neurodevelopmental, synaptic or epigenetic disorder. Here we provide evidence that neurodegeneration is implicated in SCZ. The DTNBP1 (dystrobrevin-binding protein 1) gene encodes dysbindin-1 and is a leading susceptibility gene of SCZ. We previously reported that the dysbindin-1C isoform regulates the survival of the hilar glutamatergic mossy cells in the dentate gyrus, which controls the adult hippocampal neurogenesis. However, the underlying mechanism of hilar mossy cell loss in the dysbindin-1-deficient sandy (sdy) mice (a mouse model of SCZ) is unknown. In this study, we did not observe the apoptotic signals in the hilar mossy cells of the sdy mice by using the TUNEL assay and immunostaining of cleaved caspase-3 or necdin, a dysbindin-1- and p53-interacting protein required for neuronal survival. However, we found that the steady-state level of LC3-II, a marker of autophagosomes, was decreased in the hippocampal formation in the mice lacking dysbindin-1C. Furthermore, we observed a significant reduction of the cytosolic LC3-II puncta in the mossy cells of sdy mice. In addition, overexpression of dysbindin-1C, but not 1A, in cultured cells increased LC3-II level and the LC3 puncta in the transfected cells. These results suggest that dysbindin-1C deficiency causes impaired autophagy, which is likely implicated in the pathogenesis of SCZ. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
    Journal of Genetics and Genomics 01/2015; 42(1):1-8. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD.
    Neurobiology of Aging 09/2014; · 4.85 Impact Factor