Ragulator Is a GEF for the Rag GTPases that Signal Amino Acid Levels to mTORC1.

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA
Cell (Impact Factor: 33.12). 09/2012; 150(6):1196-208. DOI: 10.1016/j.cell.2012.07.032
Source: PubMed

ABSTRACT The mTOR Complex 1 (mTORC1) pathway regulates cell growth in response to numerous cues, including amino acids, which promote mTORC1 translocation to the lysosomal surface, its site of activation. The heterodimeric RagA/B-RagC/D GTPases, the Ragulator complex that tethers the Rags to the lysosome, and the v-ATPase form a signaling system that is necessary for amino acid sensing by mTORC1. Amino acids stimulate the binding of guanosine triphosphate to RagA and RagB but the factors that regulate Rag nucleotide loading are unknown. Here, we identify HBXIP and C7orf59 as two additional Ragulator components that are required for mTORC1 activation by amino acids. The expanded Ragulator has nucleotide exchange activity toward RagA and RagB and interacts with the Rag heterodimers in an amino acid- and v-ATPase-dependent fashion. Thus, we provide mechanistic insight into how mTORC1 senses amino acids by identifying Ragulator as a guanine nucleotide exchange factor (GEF) for the Rag GTPases.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased ligand-dependent Notch signalling. lgl mutant tissue also exhibits an accumulation of early endosomes, recycling endosomes, early-multivesicular body markers and acidic vesicles. We showed that elevated Notch signalling in lgl(-) tissue can be rescued by feeding larvae the vesicle de-acidifying drug chloroquine, revealing that Lgl attenuates Notch signalling by limiting vesicle acidification. Strikingly, chloroquine also rescued the lgl(-) overgrowth phenotype, suggesting that the Hippo pathway defects were also rescued. In this extraview, we provide additional data on the regulation of Notch signalling and endocytosis by Lgl, and discuss possible mechanisms by which Lgl depletion contributes to signalling pathway defects and tumorigenesis.
    Cell cycle (Georgetown, Tex.) 03/2015; DOI:10.1080/15384101.2015.1026515 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.
    Scientific Reports 03/2015; 5:9502. DOI:10.1038/srep09502 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is strongly associated with increased incidence of heart disease and mortality due to development of diabetic cardiomyopathy. Even in the absence of cardiovascular disease, cardiomyopathy frequently arises in diabetic patients. Current treatment options for cardiomyopathy in diabetic patients are the same as for non-diabetic patients and do not address the causes underlying the loss of contractility. Recent Advances: Although there are numerous distinctions between Type 1 and Type 2 diabetes, recent evidence suggests that the two disease states converge on mitochondria as an epicenter for cardiomyocyte damage. Accumulation of dysfunctional mitochondria contributes to cardiac tissue injury in both acute and chronic conditions. Removal of damaged mitochondria by macroautophagy, termed "mitophagy", is critical for maintaining cardiomyocyte health and contractility under both normal conditions and during stress. However, very little is known about the involvement of mitophagy in the pathogenesis of diabetic cardiomyopathy. A growing interest in this topic has given rise to a wave of publications that aim to decipher the status of autophagy and mitophagy in Type 1 and Type 2 diabetes. This review summarizes these recent studies with the goal of drawing conclusions about the activation or suppression of autophagy and mitophagy in the diabetic heart. A better understanding of how autophagy and mitophagy are affected in the diabetic myocardium is still needed, as well as whether they can be targeted therapeutically.
    Antioxidants & Redox Signaling 03/2015; DOI:10.1089/ars.2015.6322 · 7.67 Impact Factor


Available from