Reproducibility of Four-dimensional Computed Tomography-based Lung Ventilation Imaging

Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr., Stanford, CA 94305-5847.
Academic radiology (Impact Factor: 2.08). 09/2012; 19(12). DOI: 10.1016/j.acra.2012.07.006
Source: PubMed

ABSTRACT RATIONALE AND OBJECTIVES: A novel ventilation imaging method based on four-dimensional (4D) computed tomography (CT) has been applied to the field of radiation oncology. Understanding its reproducibility is a prerequisite for clinical applications. The purpose of this study was to quantify the reproducibility of 4D CT ventilation imaging over different days and the same session. MATERIALS AND METHODS: Two ventilation images were created from repeat 4D CT scans acquired over the average time frames of 15 days for 6 lung cancer patients and 5 minutes for another 6 patients. The reproducibility was quantified using the voxel-based Spearman rank correlation coefficients for all lung voxels and Dice similarity coefficients (DSC) for the spatial overlap of segmented high-, moderate-, and low-functional lung volumes. Furthermore, the relationship between the variation in abdominal motion range as a measure of the depth of breathing and variation in ventilation was evaluated using linear regression. RESULTS: The voxel-based correlation between the two ventilation images was moderate on average (0.50 ± 0.15). The DSCs were also moderate for the high- (0.60 ± 0.08), moderate- (0.46 ± 0.06), and low-functional lung (0.58 ± 0.09). No patients demonstrated strong correlations. The relationship between the motion range variation and ventilation variation was found to be moderate and significant. CONCLUSIONS: We investigated the reproducibility of 4D CT ventilation imaging over the time frames of 15 days and 5 minutes and found that it was only moderately reproducible. Respiratory variation during 4D CT scans was found to deteriorate the reproducibility. Improvement of 4D CT imaging is necessary to increase the reproducibility of 4D CT ventilation imaging.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Ninety-eight lung cancer patients with pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change-based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
    International journal of radiation oncology, biology, physics 03/2015; 92(2). DOI:10.1016/j.ijrobp.2015.01.019 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the performance of a 4-dimensional (4-D) cone-beam computed tomographic (CBCT) reconstruction scheme based on simultaneous motion estimation and image reconstruction (SMEIR) through patient studies. The SMEIR algorithm contains 2 alternating steps: (1) motion-compensated CBCT reconstruction using projections from all phases to reconstruct a reference phase 4D-CBCT by explicitly considering the motion models between each different phase and (2) estimation of motion models directly from projections by matching the measured projections to the forward projection of the deformed reference phase 4D-CBCT. Four lung cancer patients were scanned for 4 to 6 minutes to obtain approximately 2000 projections for each patient. To evaluate the performance of the SMEIR algorithm on a conventional 1-minute CBCT scan, the number of projections at each phase was reduced by a factor of 5, 8, or 10 for each patient. Then, 4D-CBCTs were reconstructed from the down-sampled projections using Feldkamp-Davis-Kress, total variation (TV) minimization, prior image constrained compressive sensing (PICCS), and SMEIR. Using the 4D-CBCT reconstructed from the fully sampled projections as a reference, the relative error (RE) of reconstructed images, root mean square error (RMSE), and maximum error (MaxE) of estimated tumor positions were analyzed to quantify the performance of the SMEIR algorithm. The SMEIR algorithm can achieve results consistent with the reference 4D-CBCT reconstructed with many more projections per phase. With an average of 30 to 40 projections per phase, the MaxE in tumor position detection is less than 1 mm in SMEIR for all 4 patients. The results from a limited number of patients show that SMEIR is a promising tool for high-quality 4D-CBCT reconstruction and tumor motion modeling. Copyright © 2015 Elsevier Inc. All rights reserved.
    International journal of radiation oncology, biology, physics 02/2015; 91(2):410-8. DOI:10.1016/j.ijrobp.2014.10.029 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively.
    International journal of radiation oncology, biology, physics 08/2014; 90(2). DOI:10.1016/j.ijrobp.2014.06.006 · 4.18 Impact Factor


Available from
May 22, 2014

Similar Publications