Article

Activity-Dependent Regulation of Retinogeniculate Signaling by Metabotropic Glutamate Receptors

Department of Molecular and Integrative Physiology, Department of Pharmacology, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 09/2012; 32(37):12820-31. DOI: 10.1523/JNEUROSCI.0687-12.2012
Source: PubMed

ABSTRACT Thalamocortical neurons in dorsal lateral geniculate nucleus (dLGN) dynamically convey visual information from retina to the neocortex. Activation of metabotropic glutamate receptors (mGluRs) exerts multiple effects on neural integration in dLGN; however, their direct influence on the primary sensory input, namely retinogeniculate afferents, is unknown. In the present study, we found that pharmacological or synaptic activation of type 1 mGluRs (mGluR(1)s) significantly depresses glutamatergic retinogeniculate excitation in rat thalamocortical neurons. Pharmacological activation of mGluR(1)s attenuates excitatory synaptic responses in thalamocortical neurons at a magnitude sufficient to decrease suprathreshold output of these neurons. The reduction in both NMDA and AMPA receptor-dependent synaptic responses results from a presynaptic reduction in glutamate release from retinogeniculate terminals. The suppression of retinogeniculate synaptic transmission and dampening of thalamocortical output was mimicked by tetanic activation of retinogeniculate afferent in a frequency-dependent manner that activated mGluR(1)s. Retinogeniculate excitatory synaptic transmission was also suppressed by the glutamate transport blocker TBOA (dl-threo-β-benzyloxyaspartic acid), suggesting that mGluR(1)s were activated by glutamate spillover. The data indicate that presynaptic mGluR(1) contributes to an activity-dependent mechanism that regulates retinogeniculate excitation and therefore plays a significant role in the thalamic gating of visual information.

Full-text

Available from: Martha U Gillette, May 25, 2015
0 Followers
 · 
144 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Relay cells of dorsal lateral geniculate nucleus (LGN) receive a Class 1 glutamatergic input from the retina and a Class 2 input from cortical layer 6. Among the properties of Class 2 synapses is the ability to activate metabotropic glutamate receptors (mGluRs), and mGluR activation is known to affect thalamocortical transmission via regulating retinogeniculate and thalamocortical synapses. Using brain slices, we studied the effects Group I (DHPG) and Group II (DCG IV) mGluR agonists on retinogeniculate synapses. We showed that both agonists inhibit retinogeniculate EPSCs through presynaptic mechanisms, and their effects are additive and independent. We also found high frequency stimulation of the layer 6 corticothalamic input produced a similar suppression of retinogeniculate EPSCs, suggesting layer 6 projection to LGN as a plausible source of activating these presynaptic mGluRs.
    Neuroscience 04/2013; DOI:10.1016/j.neuroscience.2013.03.043 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabotropic glutamate receptors (mGluRs) have a ubiquitous distribution in the central nervous system and often serve to regulate the release of neurotransmitters. We have previously shown that activation of both presynaptic and postsynaptic metabotropic glutamate receptors (mGluRs) can affect the gain of glutamatergic inputs in both thalamus and cortex. In the present study, we sought to determine the effect of mGluR activation on GABAergic inputs in cortex. Using whole cell recordings in a mouse slice preparation of either primary visual or auditory cortex (V1 or A1), we tested the effects on mGluRs by applying various agonists to the slice. Two pathways were tested in each area: the GABAergic inputs in layers 2/3 activated from layer 4 and the GABAergic inputs in layer 4 activated from adjacent layer 4. In both of these pathways, we found that activation of mGluRs significantly reduced the amplitude of the evoked IPSCs. Because the effects were not blocked by the addition of GDPβS to the recording electrode, and because mGluR agonists did not affect responses to photostimulation of GABA in a low Ca(2+) and high Mg(2+) bathing solution, we concluded this reduction was due to activation of presynaptic mGluRs. Furthermore, using specific mGluR agonists, we found that group II mGluRs, but not group I mGluRs, were involved in these modulatory effects. Because similar results were found in both pathways in V1 and A1, a possible cortical pattern for these effects is suggested.
    Journal of Neurophysiology 03/2014; 111(11). DOI:10.1152/jn.00730.2013 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies.
    The Neuroscientist 03/2013; 20(2). DOI:10.1177/1073858413478490 · 7.62 Impact Factor