Article

Mitochondrial Genome Evolution in a Single Protoploid Yeast Species

Department of Genetics, Genomics and Microbiology, University of Strasbourg/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7156, Strasbourg, France.
G3-Genes Genomes Genetics (Impact Factor: 2.51). 09/2012; 2(9):1103-11. DOI: 10.1534/g3.112.003152
Source: PubMed

ABSTRACT Mitochondria are organelles, which play a key role in some essential functions, including respiration, metabolite biosynthesis, ion homeostasis, and apoptosis. The vast numbers of mitochondrial DNA (mtDNA) sequences of various yeast species, which have recently been published, have also helped to elucidate the structural diversity of these genomes. Although a large corpus of data are now available on the diversity of yeast species, little is known so far about the mtDNA diversity in single yeast species. To study the genetic variations occurring in the mtDNA of wild yeast isolates, we performed a genome-wide polymorphism survey on the mtDNA of 18 Lachancea kluyveri (formerly Saccharomyces kluyveri) strains. We determined the complete mt genome sequences of strains isolated from various geographical locations (in North America, Asia, and Europe) and ecological niches (Drosophila, tree exudates, soil). The mt genome of the NCYC 543 reference strain is 51,525 bp long. It contains the same core of genes as Lachancea thermotolerans, the nearest relative to L. kluyveri. To explore the mt genome variations in a single yeast species, we compared the mtDNAs of the 18 isolates. The phylogeny and population structure of L. kluyveri provide clear-cut evidence for the existence of well-defined geographically isolated lineages. Although these genomes are completely syntenic, their size and the intron content were found to vary among the isolates studied. These genomes are highly polymorphic, showing an average diversity of 28.5 SNPs/kb and 6.6 indels/kb. Analysis of the SNP and indel patterns showed the existence of a particularly high overall level of polymorphism in the intergenic regions. The dN/dS ratios obtained are consistent with purifying selection in all these genes, with the noteworthy exception of the VAR1 gene, which gave a very high ratio. These data suggest that the intergenic regions have evolved very fast in yeast mitochondrial genomes.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. Mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists or invertebrates. Saccharomyces cerevisiae has proven to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different Saccharomyces cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background impacts hotspots localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance.
    Genetics 07/2014; 198(2). DOI:10.1534/genetics.114.166637 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing availability of mitochondrial (mt) sequence data from various yeasts provides a tool to study genomic evolution within and between different species. While the genomes from a range of lineages are available, there is a lack of information concerning intraspecific mtDNA diversity. Here, we analyzed the mt genomes of 51 strains from Lachancea thermotolerans, a protoploid yeast species that has been isolated from several locations (Europe, Asia, Australia, South Africa, and North / South America) and ecological sources (fruit, tree exudate, plant material, and grape and agave fermentations). Protein coding genes from the mtDNA were used to construct a phylogeny, which reflected a similar yet less resolved topology in comparison to the phylogenetic tree of 50 nuclear genes. In comparison to its sister species Lachancea kluyveri, L. thermotolerans has a smaller mt genome. This is due to shorter intergenic regions and fewer introns, of which the latter are only found in COX1. We revealed that L. kluyveri and L. thermotolerans share similar levels of intraspecific divergence concerning the nuclear genomes. However, L. thermotolerans has a more highly conserved mt genome with the coding regions characterized by low rates of nonsynonymous substitution. Thus, in the mt genomes of L. thermotolerans, stronger purifying selection and lower mutation rates potentially shape genome diversity in comparison to L. kluyveri, demonstrating that the factors driving mt genome evolution are different even between closely related species.
    Genome Biology and Evolution 09/2014; DOI:10.1093/gbe/evu203 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yeast species represent an ideal model system for population genomic studies but large-scale polymorphism surveys have only been reported for species of the Saccharomyces genus so far. Hence, little is known about intraspecific diversity and evolution in yeast. To obtain a new insight into the evolutionary forces shaping natural populations, we sequenced the genomes of an expansive worldwide collection of isolates from a species distantly related to S. cerevisiae: Lachancea kluyveri (formerly Saccharomyces kluyveri). We identified 6.5 million SNPs and showed that a large introgression event of 1-Mb of GC-rich sequence in the chromosomal arm probably occurred in the last common ancestor of all L. kluyveri strains. Our population genomic data clearly revealed that this 1-Mb region underwent a molecular evolution pattern very different from the rest of the genome. It is characterized by a higher recombination rate, with a dramatically elevated A:T→G:C substitution rate, which is the signature of an increased GC-biased gene conversion. In addition, the predicted base composition at equilibrium demonstrates that the chromosome-scale compositional heterogeneity will persist after the genome has reached mutational equilibrium. Altogether, the data presented herein clearly show that distinct recombination and substitution regimes can coexist and lead to different evolutionary patterns within a single genome.
    Molecular Biology and Evolution 10/2014; 32(1). DOI:10.1093/molbev/msu295 · 14.31 Impact Factor

Full-text (5 Sources)

Download
4 Downloads
Available from
Jan 16, 2015