Methyljasmonate displays in vitro and in vivo activity against multiple myeloma cells

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
British Journal of Haematology (Impact Factor: 4.96). 09/2012; 159(3):340-51. DOI: 10.1111/j.1365-2141.2012.09253.x
Source: PubMed

ABSTRACT Jasmonates, plant stress hormones, have been demonstrated to be effective in killing various types of cancer cells. We therefore tested if methyljasmonate (MJ) has activity against multiple myeloma (MM) in vitro and in vivo. MM cell lines and primary MM tumour cells responded to MJ in vitro at concentrations that did not significantly affect normal haematopoietic cells, without stroma-mediated resistance. Brief MJ exposures of MM cells caused release of Hexokinase 2 (HK2) from mitochondria, rapid ATP depletion, perturbation of major intracellular signalling pathways, and ensuing mainly apoptotic cell death. Sensitivity to MJ correlated with lower cellular glucose consumption and lactate production, as well as lower intracellular protein levels of HK2, phosphorylated Voltage-dependent anion channel 2/3 (pVDAC2/3) and Aldo-keto reductase family 1 member C1 (AKR1C1), which represent potential biomarkers of responsiveness to MJ treatment, especially as AKR1C1 transcript levels also correlate with clinical outcome in bortezomib- or dexamethasone-treated MM patients. Interestingly, MJ synergized with bortezomib in vitro and prolonged survival of immunocompromised mice harbouring diffuse lesions of MM.1S cells compared to vehicle-treated mice (P = 0·0046). These studies indicate that jasmonates represent a new, promising strategy to treat MM.


Available from: Efstathios Kastritis, May 01, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.
    International Journal of Nanomedicine 01/2015; 10:585-94. DOI:10.2147/IJN.S67652 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells depend on an altered energy metabolism characterized by increased rates of both glycolysis and glutaminolysis. Accordingly, corresponding key metabolic enzymes are overexpressed or hyperactivated. As a result, this newly acquired metabolic profile determines most other cancer hallmarks including resistance to cell death. Recent findings highlighted metabolic enzymes as direct modulators of cell death pathways. Conversely, key mediators of cell death mechanisms are emerging as new binding partners of glycolytic actors; moreover, there is evidence that metabolic regulators re-localize to specific subcellular compartments or organelles to modulate various types of cell demise. The final outcome is the resistance against cell death programs. Current findings give a new meaning to metabolic pathways and allow understanding how they affect cancer-specific pathological alterations. Furthermore, they shed light on potentially targetable functions of metabolic actors to restore susceptibility of cancer cells to death. Here, we discuss an emerging interplay between cell metabolism and cell death, focusing on interactions that may offer new options of targeted therapies in cancer treatment involving more specifically hexokinases and glyceraldehyde-3-phosphate dehydrogenase.
    Biochemical Pharmacology 11/2014; 92(1). DOI:10.1016/j.bcp.2014.07.005 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methyl jasmonate (MJ), an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1) arrests cell cycle, inhibiting cell growth and proliferation, (2) causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis) pathways, (3) detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4) induces reactive oxygen species mediated responses, (5) stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6) inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7) inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.
    International Journal of Cell Biology 02/2014; 2014:572097. DOI:10.1155/2014/572097