Burden of Rare Sarcomere Gene Variants in the Framingham and Jackson Heart Study Cohorts

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
The American Journal of Human Genetics (Impact Factor: 10.93). 09/2012; 91(3):513-9. DOI: 10.1016/j.ajhg.2012.07.017
Source: PubMed


Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis.

Download full-text


Available from: Susan Cheng, Mar 18, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The completion of the Human Genome Project was a landmark achievement, but as clinical genetic testing becomes more mainstream, the extent of remarkable genetic variation is increasingly being appreciated. Newer DNA sequencing technology can now complete the sequencing of an entire human genome several times over in a matter of days, but this will undoubtedly add new challenges to the difficulty of distinguishing true pathogenic variants from benign variants in diagnostic genetics and in the research setting. The recent discovery of the role of titin gene (TTN) mutations in dilated cardiomyopathy (DCM) will make genetic testing in this disease more efficient. Furthermore, better understanding of genotype-phenotype associations will assist clinicians in identifying early stages of disease and providing more appropriate treatments. This high level of complexity requires an expert genetic team to offer counseling and to manage, deliver, and follow-up over time the results of genetic testing, which is particularly important for screening of family members potentially at risk. In DCM, genetic testing may be useful for the identification of non-carriers and asymptomatic carriers, as well as for prevention strategies, sport recommendations, and defibrillator implantation. It can also guide reproductive decision-making including utilization of pre-implantation genetic diagnostic strategies.
    Discovery medicine 02/2013; 15(80):43-9. · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural populations of the fruit fly, Drosophila melanogaster, segregate genetic variation that leads to cardiac disease phenotypes. One nearly isogenic line from a North Carolina peach orchard, WE70, is shown to harbor two genetically distinct heart phenotypes: elevated incidence of arrhythmias, and a dramatically constricted heart diameter in both diastole and systole, with resemblance to restrictive cardiomyopathy in humans. Assuming the source to be rare variants of large effect, we performed Bulked Segregant Analysis using genomic DNA hybridization to Affymetrix chips to detect single feature polymorphisms, but found that the mutant phenotypes are more likely to have a polygenic basis. Further mapping efforts revealed a complex architecture wherein the constricted cardiomyopathy phenotype was observed in individual whole chromosome substitution lines, implying that variants on both major autosomes are sufficient to produce the phenotype. A panel of 170 Recombinant Inbred Lines (RIL) was generated, and a small subset of mutant lines selected, but these each complemented both whole chromosome substitutions, implying a non-additive (epistatic) contribution to the "disease" phenotype. Low coverage whole genome sequencing was also used to attempt to map chromosomal regions contributing to both the cardiomyopathy and arrhythmia, but a polygenic architecture had to be again inferred to be most likely. These results show that an apparently simple rare phenotype can have a complex genetic basis that would be refractory to mapping by deep sequencing in pedigrees. We present this as a cautionary tale regarding assumptions related to attempts to map new disease mutations on the assumption that probands carry a single causal mutation.
    PLoS ONE 04/2013; 8(4):e62909. DOI:10.1371/journal.pone.0062909 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The genetic basis of familial hypertrophic cardiomyopathy (HCM) is well described, but the relation between genotype and clinical phenotype is still poorly characterised. Objective To summarise and critically review the current literature on genotype–phenotype associations in patients with HCM and to perform a meta-analysis on selected clinical features. Data sources PubMed/Medline was searched up to January 2013. Retrieved articles were checked for additional publications. Selection criteria Observational, cross-sectional and prospectively designed English language human studies that analysed the relationship between the presence of mutations in sarcomeric protein genes and clinical parameters. Data extraction and analysis The pooled analysis was confined to studies reporting on cohorts of unrelated and consecutive patients in which at least two sarcomere genes were sequenced. A random effect meta-regression model was used to determine the overall prevalence of predefined clinical features: age at presentation, gender, family history of HCM, family history of sudden cardiac death (SCD), and maximum left ventricular wall thickness (MLVWT). The I2 statistic was used to estimate the proportion of total variability in the prevalence data attributable to the heterogeneity between studies. Results Eighteen publications (corresponding to a total of 2459 patients) were selected for the pooled analysis. The presence of any sarcomere gene mutation was associated with a younger age at presentation (38.4 vs 46.0 years, p<0.0005), a family history of HCM (50.6% vs 23.1%, p<0.0005), a family history of SCD (27.0% vs 14.9%, p<0.0005) and greater MLVWT (21.0 vs 19.3 mm, p=0.03). There were no differences when the two most frequently affected genes, MYBPC3 and MYH7, were compared. A total of 53 family studies were also included in the review. These were characterised by pronounced variability and the majority of studies reporting on outcomes analysed small cross-sectional cohorts and were unsuitable for pooled analyses. Conclusions The presence of a mutation in any sarcomere gene is associated with a number of clinical features. The heterogeneous nature of the disease and the inconsistency of study design precludes the establishment of more precise genotype–phenotype relationships. Large scale studies examining the relation between genotype, disease severity, and prognosis are required.
    Heart (British Cardiac Society) 05/2013; 99(24). DOI:10.1136/heartjnl-2013-303939 · 5.60 Impact Factor
Show more