A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010

Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.
PLoS Neglected Tropical Diseases (Impact Factor: 4.45). 09/2012; 6(9):e1814. DOI: 10.1371/journal.pntd.0001814
Source: PubMed

ABSTRACT Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite.
We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1-99 year age range (PvPR(1-99)) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR(1-99). The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR.
This detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination.

Download full-text


Available from: Simon Iain Hay, Aug 24, 2014
43 Reads
  • Source
    • "Plasmodium vivax malaria is a serious neglected disease with transmission in 95 countries [1] and an estimated 80 to 300 million yearly cases, extreme morbidity and the possibility of death [2] [3]. Infection typically results in repeated episodes of paroxysms, with high fever and chills, and symptoms that include violent headaches, vomiting, diarrhea, and muscle aches. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Plasmodium vivax is the causative infectious agent of 80-300 million annual cases of malaria. Many aspects of this parasite's biology remain unknown. To further elucidate the interaction of P. vivax with its Saimiri boliviensis host, we obtained detailed proteomes of infected red blood cells, representing the trophozoite-enriched stage of development. Data from two of three biological replicate proteomes, emphasized here, were analyzed using five search engines, which enhanced identifications and resulted in the most comprehensive P. vivax proteomes to date, with 1375 P. vivax and 3209 S. boliviensis identified proteins. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with P. vivax's known reticulocyte host-cell specificity. A majority of the host and pathogen proteins identified belong to specific functional categories, and several parasite gene families, while 33% of the P. vivax proteins have no reported function. Hemoglobin was significantly oxidized in both proteomes, and additional protein oxidation and nitration was detected in one of the two proteomes. Detailed analyses of these post-translational modifications are presented. The proteins identified here significantly expand the known P. vivax proteome and complexity of available host protein functionality underlying the host-parasite interactive biology, and reveal unsuspected oxidative modifications that may impact protein function. Biological significance: Plasmodium vivax malaria is a serious neglected disease, causing an estimated 80 to 300 million cases annually in 95 countries. Infection can result in significant morbidity and possible death. P. vivax, unlike the much better-studied Plasmodium falciparum species, cannot be grown in long-term culture, has a dormant form in the liver called the hypnozoite stage, has a reticulocyte host-cell preference in the blood, and creates caveolae vesicle complexes at the surface of the infected reticulocyte membranes. Studies of stage-specific P. vivax expressed proteomes have been limited in scope and focused mainly on pathogen proteins, thus limiting understanding of the biology of this pathogen and its host interactions. Here three P. vivax proteomes are reported from biological replicates based on purified trophozoite-infected reticulocytes from different Saimiri boliviensis infections (the main non-human primate experimental model for P. vivax biology and pathogenesis). An in-depth analysis of two of the proteomes using 2D LC/MS/MS and multiple search engines identified 1375 pathogen proteins and 3209 host proteins. Numerous functional categories of both host and pathogen proteins were identified, including several known P. vivax protein family members (e.g., PHIST, eTRAMP and VIR), and 33% of protein identifications were classified as hypothetical. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with this parasite species' known reticulocyte host-cell specificity. In two biological replicates analyzed for post-translational modifications, hemoglobin was extensively oxidized, and various other proteins were also oxidized or nitrated in one of the two replicates. The cause of such protein modification remains to be determined but could include oxidized heme and oxygen radicals released from the infected red blood cell's parasite-induced acidic digestive vacuoles. In any case, the data suggests the presence of distinct infection-specific conditions whereby both the pathogen and host infected red blood cell proteins may be subject to significant oxidative stress.
    Journal of Proteomics 12/2014; 115. DOI:10.1016/j.jprot.2014.12.010 · 3.89 Impact Factor
  • Source
    • "The World Health Organization in its latest malaria report (2) estimated that about 207 million persons had clinical disease and 627,000 died worldwide from malaria in 2012. Human malaria is endemic in many parts of sub-Saharan Africa, South and Southeast Asia, and Central and South America (3, 4). About 3.4 billion people in the world are at risk of malaria, although the risk is relatively low outside Africa and South/Southeast Asia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque mon-keys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malar-iae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The poten-tial for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria.
    Frontiers in Public Health 08/2014; 2:123. DOI:10.3389/fpubh.2014.00123
  • Source
    • "It is estimated that more than 1.5 billion people live at risk of P. vivax infection (Gething et al. 2012). Along with reports from the literature describing a wide spectrum of clinical manifestations associated with severe vivax malaria in distinct settings (Tjitra et al. 2008, Kochar et al. 2009, Alexandre et al. 2010), there is evidence that children are a specially vulnerable population (Genton et al. 2008, Poespoprodjo et al. 2009, Lanca et al. 2012), highlighting the need to better understand the mechanisms and clinical complications associated with this infection (Mueller et al. 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is the most widespread parasite causing malaria, being especially prevalent in the Americas and Southeast Asia. Children are one of the most affected populations, especially in highly endemic areas. However, there are few studies evaluating the therapeutic response of infants with vivax malaria. This study retrospectively evaluated the parasitaemia clearance in children diagnosed with vivax malaria during the first five days of exclusive treatment with chloroquine (CQ). Infants aged less than six months old had a significantly slower parasitaemia clearance time compared to the group of infants and children between six months and 12 years old (Kaplan-Meier survival analysis; Wilcoxon test; p = 0.004). The impaired clearance of parasitaemia in younger children with vivax malaria is shown for the first time in Latin America. It is speculated that CQ pharmacokinetics in young children with vivax malaria is distinct, but this specific population may also allow the detection of CQ-resistant parasites during follow-up, due to the lack of previous immunity.
    Memórias do Instituto Oswaldo Cruz 08/2014; DOI:10.1590/0074-0276130068 · 1.59 Impact Factor
Show more