Prospective Identification of Glioblastoma Cells Generating Dormant Tumors

Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
PLoS ONE (Impact Factor: 3.53). 09/2012; 7(9):e44395. DOI: 10.1371/journal.pone.0044395
Source: PubMed

ABSTRACT Although dormant tumors are highly prevalent within the human population, the underlying mechanisms are still mostly unknown. We have previously identified the consensus gene expression pattern of dormant tumors. Here, we show that this gene expression signature could be used for the isolation and identification of clones which generate dormant tumors. We established single cell-derived clones from the aggressive tumor-generating U-87 MG human glioblastoma cell line. Based only on the expression pattern of genes which were previously shown to be associated with tumor dormancy, we identified clones which generate dormant tumors. We show that very high expression levels of thrombospondin and high expression levels of angiomotin and insulin-like growth factor binding protein 5 (IGFBP5), together with low levels of endothelial specific marker (ESM) 1 and epithelial growth factor receptor (EGFR) characterize the clone which generates dormant U-87 MG derived glioblastomas. These tumors remained indolent both in subcutaneous and orthotopic intracranial sites, in spite of a high prevalence of proliferating cells. We further show that tumor cells which form U-87 MG derived dormant tumors have an impaired angiogenesis potential both in vitro and in vivo and have a slower invasion capacity. This work demonstrates that fast-growing tumors contain tumor cells that when isolated will form dormant tumors and serves as a proof-of-concept for the use of transcriptome profiles in the identification of such cells. Isolating the tumor cells that form dormant tumors will facilitate understanding of the underlying mechanisms of dormant micro-metastases, late recurrence, and changes in rate of tumor progression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocan expression is increasingly studied in various human cancers. Experimental evidence showed that human endocan, through its glycan chain, is implicated in various processes of tumor growth. We functionally characterize mouse endocan which is also a chondroitin sulfate proteoglycan but much less glycanated than human endocan. Distant domains from the O-glycanation site, located within exons 1 and 2 determine the glycanation pattern of endocan. In opposite to the human homologue, overexpression of mouse endocan in HT-29 cells delayed the tumor appearance and reduced the tumor growth rate. This tumor growth inhibition is supported by non glycanated form of mouse endocan. Non glycanated human endocan overexpressed in HT-29, A549 or K1000 cells also exhibited an anti-tumor effect. Moreover, systemic delivery of non glycanated human endocan also results in HT-29 tumor growth delay. In vitro, endocan polypeptide did not affect HT-29 cell proliferation, nor cell viability. In tumor tissue sections, a stromal inflammatory reaction was observed only in tumors overexpressing endocan polypeptide, and depletion of CD122+ cells was able to delete partially the anti-tumor effect of endocan polypeptide. These results reveal a novel pathway for endocan in the control of tumor growth, which involves inflammatory cells of the innate immunity.
    Oncotarget 10/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The subcutaneous matrigel plug assay in mice is a method of choice for the in vivo evaluation of pro- and anti-angiogenic factors. In this method, desired factors are introduced into cold-liquid ECM-mimic gel which, after subcutaneous injection, solidifies to form an environment mimicking the cancer milieu. This matrix permits the penetration of host cells, such as endothelial cells, and therefore, the formation of vasculature. Herein we propose a new modified matrigel plug assay, which can be exploited to illustrate the angiogenic potential of a pool of factors secreted by cancer cells, as opposed to a specific factor (e.g., bFGF and VEGF) or agent. The plug containing ECM-mimic gel is utilized to introduce the host (i.e., mouse) with a pool of factors secreted to the C.M. of fast-growing tumor-generating glioblastoma cells. We have previously described an extensive comparison of the angiogenic potential of U-87 MG human glioblastoma and its dormant-derived clone, in this system model, showing induced angiogenesis in the U-87 MG parental cells. The C.M. is prepared by filtering collected media from confluent tissue culture plates of either cell line following 48 hr incubation. Hence, it contains only factors secreted by the cells, without the cells themselves. Described here is the combination of two imaging modalities, microbubbles contrast-enhanced ultrasound imaging and intravital fibered-confocal endomicroscopy, for an accurate, real-time characterization of the extent, morphology and functionality of newly-formed blood vessels within the plugs.
    Journal of Visualized Experiments 01/2014; DOI:10.3791/51525
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocan is a novel endothelium derived soluble dermatan sulfate proteoglycan. It has the property of binding to a wide range of bioactive molecules associated with cellular signaling and adhesion and thus regulating proliferation, differentiation, migration, and adhesion of different cell types in health and disease. An increase in tissue expression or serum level of endocan reflects endothelial activation and neovascularization which are prominent pathophysiological changes associated with inflammation and tumor progression. Consequently, endocan has been used as a blood-based and tissue-based biomarker for various cancers and inflammation and has shown promising results.
    Indian Journal of Pharmacology 11/2014; 46(6):579-583. DOI:10.4103/0253-7613.144891 · 0.68 Impact Factor

Preview (2 Sources)

Available from