Identification of BRCA1/2 Founder Mutations in Southern Chinese Breast Cancer Patients Using Gene Sequencing and High Resolution DNA Melting Analysis

Department of Surgery, The University of Hong Kong, Hong Kong SAR.
PLoS ONE (Impact Factor: 3.23). 09/2012; 7(9):e43994. DOI: 10.1371/journal.pone.0043994
Source: PubMed


Ethnic variations in breast cancer epidemiology and genetics have necessitated investigation of the spectra of BRCA1 and BRCA2 mutations in different populations. Knowledge of BRCA mutations in Chinese populations is still largely unknown. We conducted a multi-center study to characterize the spectra of BRCA mutations in Chinese breast and ovarian cancer patients from Southern China.
A total of 651 clinically high-risk breast and/or ovarian cancer patients were recruited from the Hong Kong Hereditary Breast Cancer Family Registry from 2007 to 2011. Comprehensive BRCA1 and BRCA2 mutation screening was performed using bi-directional sequencing of all coding exons of BRCA1 and BRCA2. Sequencing results were confirmed by in-house developed full high resolution DNA melting (HRM) analysis. Among the 451 probands analyzed, 69 (15.3%) deleterious BRCA mutations were identified, comprising 29 in BRCA1 and 40 in BRCA2. The four recurrent BRCA1 mutations (c.470_471delCT, c.3342_3345delAGAA, c.5406+1_5406+3delGTA and c.981_982delAT) accounted for 34.5% (10/29) of all BRCA1 mutations in this cohort. The four recurrent BRCA2 mutations (c.2808_2811delACAA, c.3109C>T, c.7436_7805del370 and c.9097_9098insA) accounted for 40% (16/40) of all BRCA2 mutations. Haplotype analysis was performed to confirm 1 BRCA1 and 3 BRCA2 mutations are putative founder mutations. Rapid HRM mutation screening for a panel of the founder mutations were developed and validated.
In this study, our findings suggest that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer in Southern Chinese population. Knowing the spectrum and frequency of the founder mutations in this population will assist in the development of a cost-effective rapid screening assay, which in turn facilitates genetic counseling and testing for the purpose of cancer risk assessment.

Download full-text


Available from: Enders Kai On Ng,
72 Reads
  • Source
    • "Current advanced molecular technologies, including bidirectional sequencing and High Resolution DNA Melting Analysis, allow researchers to retrieve a widespread number of mutations in the BRCA1/2 genes of patients with a familial history of breast cancer [103] [104]. All the pathogenic mutations and unclassified variants retrieved in BRCA1/2 genes are reported in the Breast Cancer Core database (BIC: "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial genome and functional alterations are related to various diseases including cancer. In all cases, the role of these organelles is associated with defects in oxidative energy metabolism and control of tumor-induced oxidative stress. The present study examines the involvement of mitochondrial DNA in cancer and in particular in breast cancer. Furthermore, since mitochondrial DNA is maternally inherited, hereditary breast cancer has been focused on.
    Current Genomics 05/2013; 14(3):195-203. DOI:10.2174/1389202911314030005 · 2.34 Impact Factor
  • Source
    • "However the DNA energetics effect on its structure allow the gene expression and genome organization [31] to be an accessible denominator for the exploitation of cellular function to be a beneficial event through proper targeting by small molecule drugs triggered the focus for the preferential binding of naturally occurring methylxanthines with melted DNA using Tm/pH profiles. Furthermore the DNA melting analyses are useful to identify the mutations in cancer samples through high resolution DNA melting profiles methods [32], [33], and useful for the crucial identification of genotyping of human papilloma virus, Lepidopteran and other bacterial models [34]–[36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.
    PLoS ONE 12/2012; 7(12):e50019. DOI:10.1371/journal.pone.0050019 · 3.23 Impact Factor
  • Source
    Breast Cancer Research and Treatment 10/2012; 136(3). DOI:10.1007/s10549-012-2292-1 · 3.94 Impact Factor
Show more