Article

The mammalian gene function resource: the international knockout mouse consortium.

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK, .
Mammalian Genome (Impact Factor: 2.88). 09/2012; 23(9-10):580-6. DOI: 10.1007/s00335-012-9422-2
Source: PubMed

ABSTRACT In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal ( www.knockoutmouse.org ) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research.

1 Bookmark
 · 
244 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ∼3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (∼70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes
    Genome Research 09/2014; · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Crigler-Najjar Syndrome Type I (CNSI) is a rare genetic disorder caused by mutations in the Ugt1a1 gene. It is characterized by unconjugated hyperbilirubinemia that may result in severe neurologic damage and death if untreated. To date, liver transplantation is the only curative treatment. With the aim of generating mutant cell lines of the Ugt1 gene, we utilized the TALEN technology to introduce site-specific mutations in Ugt1 exon 4. We report a fast and efficient method to perform gene knockout in tissue culture cells, based on the use of TALEN pairs targeting restriction enzyme (RE) sites in the region of interest. This strategy overcame the presence of allele-specific single nucleotide polymorphisms (SNPs) and pseudogenes, conditions that limit INDELs' detection by Surveyor. We obtained liver-derived murine N-Muli cell clones having INDELs with efficiency close to 40%, depending on the TALEN pair and RE target site. Sequencing of the target locus and WB analysis of the isolated cell clones showed a high proportion of biallelic mutations in cells treated with the most efficient TALEN pair. Ugt glucuronidation activity was reduced basal levels in the biallelic mutant clones. These mutant liver-derived cell lines could be a very useful tool to study biochemical aspects of Ugt1 enzyme activity in a more natural context, such as substrate specificity, requirement of specific co-factors, the study of inhibitors and other pharmacological aspects, and to correlate enzyme activity to the presence of specific mutations in the gene, by adding back to the mutant cell clones specific variants of the Ugt1 gene. In addition, since genome editing has recently emerged as a potential therapeutic approach to cure genetic diseases, the definition of the most efficient TALEN pair could be an important step towards setting up a platform to perform genome editing in CNSI.
    PLoS ONE 08/2014; 9(8):e104816. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mouse lines, such imaging studies could also transform our knowledge of gene function in embryogenesis and the aetiology of developmental disorders. The International Mouse Phenotyping Consortium is coordinating efforts to phenotype single gene knockouts covering the entire mouse genome, including characterising developmental defects for those knockout lines that prove to be embryonic lethal. Here, we present a pilot study of 34 such lines, utilising high-resolution episcopic microscopy (HREM) for comprehensive 2D and 3D imaging of homozygous null embryos and their wild-type littermates. We present a simple phenotyping protocol that has been developed to take advantage of the high-resolution images obtained by HREM and that can be used to score tissue and organ abnormalities in a reliable manner. Using this approach with embryos at embryonic day 14.5, we show the wide range of structural abnormalities that are likely to be detected in such studies and the variability in phenotypes between sibling homozygous null embryos.
    Disease Models and Mechanisms 10/2014; 7(10):1143-52. · 5.54 Impact Factor

Full-text

Download
51 Downloads
Available from
May 17, 2014