Vitamin D Intake Is Negatively Associated with Promoter Methylation of the Wnt Antagonist Gene DKK1 in a Large Group of Colorectal Cancer Patients.

a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.
Nutrition and Cancer (Impact Factor: 2.47). 09/2012; 64(7):919-28. DOI: 10.1080/01635581.2012.711418
Source: PubMed

ABSTRACT Diet and lifestyle influence colorectal cancer (CRC) risk but the molecular events that mediate these effects are poorly characterized. Several dietary and lifestyle factors can modulate DNA methylation suggesting that they may influence CRC risk through epigenetic regulation of cancer-related genes. The Wnt regulatory genes DKK1 and Wnt5a are important contributors to colonic carcinogenesis and are often silenced by promoter hypermethylation in CRC; however, the dietary contributions to these events have not been explored. To investigate the link between dietary/lifestyle factors and epigenetic regulation of these Wnt signaling genes, we assessed promoter methylation of these genes in a large cohort of Canadian CRC patients from Ontario (n = 549) and Newfoundland (n = 443) and examined associations to dietary/lifestyle factors implicated in CRC risk and/or DNA methylation including intake of vitamins, fats, cholesterol, fiber, and alcohol as well as body mass index (BMI), and smoking status. Several factors were associated with methylation status including alcohol intake, BMI, and cigarette smoking. Most significantly, however, dietary vitamin D intake was strongly negatively associated with DKK1 methylation in Newfoundland (P = 0.001) and a similar trend was observed in Ontario. These results suggest that vitamin D and other dietary/lifestyle factors may alter CRC risk by mediating extracellular Wnt inhibition.


Available from: Peizhong Peter Wang, Apr 19, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) results from a stepwise accumulation of genetic and epigenetic alterations that transform the normal colonic epithelium into cancer. DNA methylation represents one of the most studied epigenetic marks in CRC, and three common epigenotypes have been identified characterized by high, intermediate and low methylation profiles, respectively. Combining DNA methylation data with gene mutations and cytogenetic alterations occurring in CRC is nowadays allowing the characterization of different CRC subtypes, but the crosstalk between DNA methylation and other epigenetic mechanisms, such as histone tail modifications and the deregulated expression of non-coding RNAs is not yet clearly defined. Epigenetic biomarkers are increasingly recognized as promising diagnostic and prognostic tools in CRC, and the potential of therapeutic applications aimed at targeting the epigenome is under investigation.
    Expert Review of Gastroenterology and Hepatology 05/2014; 8(8):1-14. DOI:10.1586/17474124.2014.924397 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The colorectal mucosal epithelium is composed of rapidly proliferating crypt cells derived by clonal expansion from stem cells. The aging human colorectal mucosa develops aberrant patterns of DNA methylation that may contribute to its increasing vulnerability to cancer. Various types of evidence suggest that age-dependent loss of global methylation, together with hypermethylation of CpG islands associated with cancer-related genes, may be influenced by nutritional and metabolic factors. Folates are essential for the maintenance of normal DNA methylation, and folate metabolism is known to modify epigenetic mechanisms under experimental conditions. Human intervention trials and cross-sectional studies suggest a role for folates and other nutritional and metabolic factors as determinants of colorectal mucosal DNA methylation. Future studies should focus on the possibility that folic acid fortification may exert unforeseen effects on the human gastrointestinal epigenome. Naturally occurring DNA methyltransferase inhibitors in plant foods may be useful for the manipulation of epigenetic profiles in health and disease.
    Epigenomics 04/2014; 6(2):239-51. DOI:10.2217/epi.14.8 · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycomb protein chromobox homolog 7 (CBX7) is involved in several biologic processes including stem cell regulation and cancer development, but its roles in breast cancer remain unknown. Here, we demonstrate that CBX7 negatively regulates breast tumor initiation. CD44(+)/CD24(-)/ESA(+) breast stem-like cells showed diminished CBX7 expression. Furthermore, small hairpin RNA-mediated CBX7 knockdown in breast epithelial and cancer cells increased the CD44(+)/CD24(-)/ESA(+) cell population and reinforced in vitro self-renewal and in vivo tumor-initiating ability. Similarly, CBX7 overexpression repressed these effects. We also found that CBX7 inhibits the Wnt/β-catenin/T cell factor pathway by enhancing the expression of Dickkopf-1 (DKK-1), a Wnt antagonist. In particular, CBX7 increased DKK-1 transcription by cooperating with p300 acetyltransferase and subsequently enhancing the histone acetylation of the DKK-1 promoter. Furthermore, pharmacologic inhibition of DKK-1 in CBX7-overexpressing cells showed recovery of Wnt signaling and consequent rescue of the CD44(+)/CD24(-)/ESA(+) cell population. Taken together, these findings indicate that CBX7-mediated epigenetic induction of DKK-1 is crucial for the inhibition of breast tumorigenicity, suggesting that CBX7 could be a potential tumor suppressor in human breast cancer.-Kim, H. -Y., Park, J.-H., Won, H.-Y., Lee, J.-Y., Kong, G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway.
    The FASEB Journal 10/2014; 29(1). DOI:10.1096/fj.14-253997 · 5.48 Impact Factor