Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors

Molecular Pain (Impact Factor: 3.65). 09/2012; 8(1):62. DOI: 10.1186/1744-8069-8-62
Source: PubMed


Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans.

Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch “puffed” cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls.

These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models.

Download full-text


Available from: Audra Kramer,
1 Follower
12 Reads
    • "Sickle mice appear to be sensitized to multiple modalities of somatosensory input. This study and others [9] [17] [20] [28] demonstrate that sickle mice are hypersensitive to a range of intensities of mechanical stimuli, ranging from light to noxious, and to cold. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. Additionally, both humans and mice with SCD experience heighted cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization, nor its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Further, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold-sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold-detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the Transient Receptor Potential Melastatin 8 (Trpm8) and TRP Ankyrin 1 (Trpa1) channels, as well as the two-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk4), and TRAAK (Kcnk10). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels.
    Pain 06/2014; DOI:10.1016/j.pain.2014.05.030 · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meningeal and other trigeminal nociceptors are thought to play important roles in the initiation of migraine headache. Currently, the only approved peripherally administered chronic migraine prophylactic drug is onabotulinumtoxinA. The purpose of this study was to determine how botulinum neurotoxin type A (BoNT-A) affects naïve and sensitized meningeal nociceptors. Using electrophysiological techniques, we identified 43 C- and 36 Aδ-meningeal nociceptors, and measured their spontaneous and evoked firing before and after BoNT-A administration to intracranial dura and extracranial suture-receptive fields. As a rule, BoNT-A inhibited C- but not Aδ-meningeal nociceptors. When applied to nonsensitized C-units, BoNT-A inhibited responses to mechanical stimulation of the dura with suprathreshold forces. When applied to sensitized units, BoNT-A reversed mechanical hypersensitivity. When applied before sensitization, BoNT-A prevented development of mechanical hypersensitivity. When applied extracranially to suture branches of intracranial meningeal nociceptors, BoNT-A inhibited the mechanical responsiveness of the suture branch but not dural axon. In contrast, BoNT-A did not inhibit C-unit responses to mechanical stimulation of the dura with threshold forces, or their spontaneous activity. The study provides evidence for the ability of BoNT-A to inhibit mechanical nociception in peripheral trigeminovascular neurons. These findings suggest that BoNT-A interferes with neuronal surface expression of high-threshold mechanosensitive ion channels linked preferentially to mechanical pain by preventing their fusion into the nerve terminal membrane.
    Cephalalgia 04/2014; 34(11). DOI:10.1177/0333102414527648 · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pain phenotype in sickle cell disease (SCD) patients is highly variable. A small percentage of SCD patients experience many vaso-occlusive crises/year, 5% of patients account for over 30% of pain episodes, while 39% report few episodes of severe pain. Clearly, a better understanding of the pathobiology of SCD is needed to improve its therapy. Humanized sickle cell mice recapitulate several phenotypes of SCD patients and provide a model for the study of SCD pain. Researchers have shown that one strain of humanized SCD mice, the BERK strain, has abnormal pain phenotype. However, the nociception phenotype of another humanized SCD mouse strain, the Townes strain, has not been described. In a large cross-sectional study of BERK and Townes SCD mice, we examined thermosensory response and sensory nerve fiber function using sine-wave electrical stimulation at 2000, 250, and 5 Hz to stimulate preferentially Aβ, Aδ, and C sensory nerve fibers, respectively. We found that BERK and Townes mice, compared to respective controls, had decreases in 2000, 250, and 5 Hz current vocalization thresholds in patterns that suggest sensitization of a broad spectrum of sensory nerve fibers. In addition, the pattern of sensitization of sensory fibers varied according to strain, sex, age, and mouse genotype. In a similarly variable pattern, Townes and BERKs also had significantly altered sensitivity to noxious thermal stimuli in agreement with what has been shown by others. In summary, the analysis of somatosensory function using sine-wave electrical stimulation in humanized sickle cell mice suggests that in SCD, both myelinated and unmyelinated, fibers are sensitized. The pattern of sensory fiber sensitization is distinct from that observed in pain models of neuropathic and inflammatory pain. These findings raise the possibility that sensitization of a broad spectrum of sensory fibers might contribute to the altered and variable nociception phenotype in SCD.
    Experimental Biology and Medicine 07/2014; 240(1). DOI:10.1177/1535370214544275 · 2.17 Impact Factor
Show more