Article

Genetic Screening for Synthetic Lethal Partners of Polynucleotide Kinase/Phosphatase: Potential for Targeting SHP-1-Depleted Cancers

Oncology, University of Alberta.
Cancer Research (Impact Factor: 9.28). 09/2012; 72(22). DOI: 10.1158/0008-5472.CAN-12-0939
Source: PubMed

ABSTRACT A genetic screen using a library of 6961 siRNAs led to the identification of SHP1 (PTPN6), a tumor suppressor frequently mutated in malignant lymphomas, leukemias and prostate cancer, as a potential synthetic lethal partner of the DNA repair protein polynucleotide kinase/phosphatase (PNKP). After confirming the partnership with SHP-1, we observed that co-depletion of PNKP and SHP-1 induced apoptosis. A T-cell lymphoma cell line that is SHP-1-deficient (Karpas 299) was shown to be sensitive to a chemical inhibitor of PNKP, but resistance was restored by expression of wild-type SHP-1 in these cells. We determined that while SHP-1 depletion does not significantly impact DNA strand-break repair, it does amplify the level of reactive oxygen species (ROS) and elevate endogenous DNA damage. The ROS scavenger WR1065 afforded protection to SHP-1 depleted cells treated with the PNKP inhibitor. We propose that co-disruption of SHP-1 and PNKP leads to an increase in DNA damage that escapes repair, resulting in the accumulation of cytotoxic double-strand breaks and induction of apoptosis. This supports an alternative paradigm for synthetic lethal partnerships that could be exploited therapeutically.

Full-text

Available from: Michael Weinfeld, Jan 06, 2015
0 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: As two commonly used tool enzymes, DNA ligase and polynucleotide kinase/phosphatase (PNKP) play important roles in DNA metabolism. More and more studies show that regulation of their activity represents promising means for cancer therapy. To detect the activity of DNA ligase with high sensitivity and specificity, a G-quadruplex DNAzyme-based DNA ligase sensor was developed. In this sensor, the use of G-quadruplex DNAzyme eliminated the needs for any labeled oligonucleotide probes, thus making label-free detection possible. The introduction of rolling circle amplification (RCA) reaction could lead to the formation of multimeric G-quadruplexes containing thousands of G-quadruplex units, which can provide highly active hemin-binding sites, thus significantly improving the sensitivity of the sensor. The proposed sensor allowed specific detection of T4 DNA ligase with a detection limit of 0.0019U/mL. By adding a PNKP-triggered 5'-phosphroylation step of the template DNA, the above sensing strategy could be easily extended to the design of PNKP sensor. The established sensor allowed specific detection of T4 PNKP with a detection limit of 0.0018U/mL. In addition, these two sensors could also be used for the studies on inhibitors of these two enzymes.
    Biosensors & Bioelectronics 12/2013; 55C:133-138. DOI:10.1016/j.bios.2013.12.001 · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatases (PTPs) play a crucial role in the regulation of human health and it is now clear that PTP dysfunction is causal to a variety of human diseases. Research in the PTP field has accelerated dramatically over the last decade fueled by cutting-edge technologies in genomic and proteomic techniques. This system-wide non-biased approach when applied to the discovery of PTP function has led to the elucidation of new and unanticipated roles for the PTPs. These discoveries, driven by genomic and proteomic approaches, have uncovered novel PTP findings that range from those that describe fundamental cell signaling mechanisms to implications for PTPs as novel therapeutic targets for the treatment of human disease. This review will discuss how new PTP functions have been uncovered through studies that have utilized genomic and proteomic technologies and strategies.
    Seminars in Cell and Developmental Biology 09/2014; 37. DOI:10.1016/j.semcdb.2014.09.021 · 5.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polynucleotide kinase (PNK) plays a crucial role in maintaining the genomic stability of cells and is becoming a potential target in the radio-therapeutic treatment of cancers. The fluorescent method is usually used to measure the PNK activity, but it is impossible to obtain the real-time monitoring without the employment of the labeled DNA probes. Here, we report a label-free bioluminescent sensor for PNK activity assay through real-time monitoring the phosphorylation-dependent DNA ligation reaction. In this bioluminescent sensor, two hairpin DNA probes with 5'-protruding terminal are designed as the phosphate acceptor, and the widely used phosphate donor of ATP is substituted by dCTP. In the absence of PNK, the ligation reaction cannot be triggered due to the lack of 5'-phosphoryl groups in the probes, and the background signal is negligible. While with the addition of PNK, the phosphorylation-ligation reaction of the probes is initiated with the release of AMP, and the subsequent conversion of AMP to ATP leads to the generation of distinct bioluminescence signal. The PNK activity assay can be performed in a real time by continuously monitoring the bioluminescence signal. This bioluminescent sensor is much simple, label-free, cost-effective, and free from the autofluorescence interference of biological matrix, and can be further used for quantitative, kinetic, and inhibition assay.
    Analytical Chemistry 07/2014; 86(16). DOI:10.1021/ac502240c · 5.83 Impact Factor