A Genome-Wide Association Study Identifies GRK5 and RASGRP1 as Type 2 Diabetes Loci in Chinese Hans.

Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China.
Diabetes (Impact Factor: 8.47). 09/2012; DOI: 10.2337/db12-0454
Source: PubMed

ABSTRACT Substantial progress has been made in identification of type 2 diabetes (T2D) risk loci in the past few years, but our understanding of the genetic basis of T2D in ethnically diverse populations remains limited. We performed a genome-wide association study and a replication study in Chinese Hans comprising 8,569 T2D case subjects and 8,923 control subjects in total, from which 10 single nucleotide polymorphisms were selected for further follow-up in a de novo replication sample of 3,410 T2D case and 3,412 control subjects and an in silico replication sample of 6,952 T2D case and 11,865 control subjects. Besides confirming seven established T2D loci (CDKAL1, CDKN2A/B, KCNQ1, CDC123, GLIS3, HNF1B, and DUSP9) at genome-wide significance, we identified two novel T2D loci, including G-protein-coupled receptor kinase 5 (GRK5) (rs10886471: P = 7.1 × 10(-9)) and RASGRP1 (rs7403531: P = 3.9 × 10(-9)), of which the association signal at GRK5 seems to be specific to East Asians. In nondiabetic individuals, the T2D risk-increasing allele of RASGRP1-rs7403531 was also associated with higher HbA(1c) and lower homeostasis model assessment of β-cell function (P = 0.03 and 0.0209, respectively), whereas the T2D risk-increasing allele of GRK5-rs10886471 was also associated with higher fasting insulin (P = 0.0169) but not with fasting glucose. Our findings not only provide new insights into the pathophysiology of T2D, but may also shed light on the ethnic differences in T2D susceptibility.


Available from: Wei Bao, May 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) had long been referred to as the "geneticist's nightmare." Genome-wide association studies have fully confirmed the polygenic nature of T2D, demonstrating the role of many genes in T2D risk. The increasingly busier picture of T2D genetics is quite difficult to understand for the diabetes research community, which can create misunderstandings with geneticists, and can eventually limit both basic research and translational outcomes of these genetic discoveries. The present review wishes to lift the fog around genetics of T2D with the hope that it will foster integrated diabetes modeling approaches from genetic defects to personalized medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 01/2015; 21(3). DOI:10.1016/j.cmet.2014.12.020 · 16.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past 8 years, the genetics of complex traits have benefited from an unprecedented advancement in the identification of common variant loci for diseases such as type 2 diabetes (T2D). The ability to undertake genome-wide association studies in large population-based samples for quantitative glycaemic traits has permitted us to explore the hypothesis that models arising from studies in non-diabetic individuals may reflect mechanisms involved in the pathogenesis of diabetes. Amongst 88 T2D risk and 72 glycaemic trait loci, only 29 are shared and show disproportionate magnitudes of phenotypic effects. Important mechanistic insights have been gained regarding the physiological role of T2D loci in disease predisposition through the elucidation of their contribution to glycaemic trait variability. Further investigation is warranted to define causal variants within these loci, including functional characterisation of associated variants, to dissect their role in disease mechanisms and to enable clinical translation.
    Current Diabetes Reports 11/2014; 14(11):551. DOI:10.1007/s11892-014-0551-8 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Previous studies on the association between vitamin D binding protein (DBP) polymorphisms and the risk of type 2 diabetes mellitus (T2DM) have produced conflicting results. The purpose of this meta-analysis was to examine whether DBP polymorphisms are associated with the risk of T2DM. Design Systematic review and meta-analysis. Methods All eligible studies were searched and acquired from the Cochrane, Pubmed, ISI, CNKI (Chinese) and Wanfang (Chinese) databases. ORs with corresponding 95% CIs were computed to estimate the association between DBP polymorphisms and T2DM. In addition, heterogeneity test, meta-regression and sensitivity analysis were also conducted. Results Six studies, which included 1191 cases and 882 controls, met the inclusion criteria and were included in the meta-analysis. The results showed that no significant associations were found between codon 416 and codon 420 polymorphisms in the DBP and the risk of T2DM in the overall analyses. In stratified analysis, significant associations between the codon 420 polymorphism and T2DM were found in Asians (allele Lys vs Thr: OR (95% CI) 1.49 (1.19 to 1.85), genotype Lys/Thr versus Thr/Thr: OR (95% CI) 1.80 (1.36 to 2.38), and Lys/Thr+Lys/Lys versus Thr/Thr: OR (95% CI) 1.81 (1.37 to 2.39), respectively) but not in Caucasians. For the codon 416, the significant association with T2DM was also detected in Asians (genotype Glu/Asp+Glu/Glu vs Asp/Asp: OR (95% CI) 1.36 (1.04 to 1.78)) but not in Caucasians. Conclusions This meta-analysis demonstrated that the DBP polymorphism was moderately associated with increased susceptibility to T2DM in Asians, but a similar association was not found in Caucasians. It suggested that ethnicity might be the potential factor associated with heterogeneity.
    BMJ Open 11/2014; 4(11):e005617. DOI:10.1136/bmjopen-2014-005617 · 2.06 Impact Factor