Induction and molecular signature of pathogenic T(H)17 cells.

1] Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2].
Nature Immunology (Impact Factor: 24.97). 09/2012; 13(10):991-9. DOI: 10.1038/ni.2416
Source: PubMed

ABSTRACT Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are often present at the sites of tissue inflammation in autoimmune diseases, which has led to the conclusion that T(H)17 cells are main drivers of autoimmune tissue injury. However, not all T(H)17 cells are pathogenic; in fact, T(H)17 cells generated with transforming growth factor-β1 (TGF-β1) and IL-6 produce IL-17 but do not readily induce autoimmune disease without further exposure to IL-23. Here we found that the production of TGF-β3 by developing T(H)17 cells was dependent on IL-23, which together with IL-6 induced very pathogenic T(H)17 cells. Moreover, TGF-β3-induced T(H)17 cells were functionally and molecularly distinct from TGF-β1-induced T(H)17 cells and had a molecular signature that defined pathogenic effector T(H)17 cells in autoimmune disease.

Download full-text


Available from: David A Hafler, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as vasoactive intestinal peptide (VIP), a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation. In this report, we evaluate the capacity of VIP to modulate naïve human cells into Th17 cells in vitro by analyzing their functional phenotype. The presence of VIP maintains the nonpathogenic profile of Th17-polarized cells, increases the proliferation rate, and decreases their Th1 potential. VIP induces the upregulation of the STAT3 gene interaction with the VPAC1 receptor during the onset of Th17 differentiation. Moreover, RAR-related orphan receptor C (RORC), RAR-related orphan receptor A (RORA), and interleukin (IL)-17A genes are upregulated in the presence of VIP through interaction with VPAC1 and VPAC2 receptors. Interestingly, VIP induces the expression of the IL-23R gene through interaction with the VPAC2 receptor during the expansion phase. This is the first report that describes the differentiation of naïve human T cells to Th17-polarized cells in the presence of VIP and demonstrates how this differentiation regulates the expression of the VIP receptors.
    Journal of Molecular Neuroscience 05/2014; DOI:10.1007/s12031-014-0318-3 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transforming growth factor β (TGF-β) family of growth factors are key regulators of mammalian development and their dysregulation is implicated in human disease, notably, heritable vasculopathies including Marfan (MFS, OMIM #154700) and Loeys-Dietz syndromes (LDS, OMIM #609192). We described a syndrome presenting at birth with distal arthrogryposis, hypotonia, bifid uvula, a failure of normal post-natal muscle development but no evidence of vascular disease; some of these features overlap with MFS and LDS. A de novo mutation in TGFB3 was identified by exome sequencing. Several lines of evidence indicate the mutation is hypomorphic suggesting that decreased TGF-β signaling from a loss of TGFB3 activity is likely responsible for the clinical phenotype. This is the first example of a mutation in the coding portion of TGFB3 implicated in a clinical syndrome suggesting TGFB3 is essential for both human palatogenesis and normal muscle growth. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 08/2013; 161(8). DOI:10.1002/ajmg.a.36056 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is an emerging body of research demonstrating that the co-expression of key lineage-specifying transcription factors, commonly referred to as 'master regulators', affects the functional capabilities and flexibility of CD4(+) T cell subsets. Here, we discuss how the natural co-expression of these lineage-specifying transcription factors has challenged the concept that the expression of a single 'master regulator' strictly establishes an absolute CD4(+) T cell phenotype. Instead, it is becoming clear that the interplay between the lineage-specifying (or lineage-defining) transcription factors, including T-bet, GATA3, RORγt, BCL-6 and FOXP3, contributes to the fate and flexibility of CD4(+) T cell subtypes. This in turn has led to the realization that CD4(+) T cell phenotypes are more diverse than previously recognized.
    Nature Reviews Immunology 10/2012; 12(11):799-804. DOI:10.1038/nri3321