Article

Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases

Program in Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 09/2012; 7(9):e44638. DOI: 10.1371/journal.pone.0044638
Source: PubMed

ABSTRACT Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stranded DNA (ssDNA) oligonucleotides and double-stranded DNA (dsDNA) cassettes. Removing this nuclease improves both recombination frequency and the inheritance of mutations at the 3' ends of ssDNA and dsDNA. Extending this approach, we show that removing a set of five exonucleases (RecJ, ExoI, ExoVII, ExoX, and Lambda Exo) substantially improves the performance of co-selection multiplex automatable genome engineering (CoS-MAGE). In a given round of CoS-MAGE with ten ssDNA oligonucleotides, the five nuclease knockout strain has on average 46% more alleles converted per clone, 200% more clones with five or more allele conversions, and 35% fewer clones without any allele conversions. Finally, we use these nuclease knockout strains to investigate and clarify the effects of oligonucleotide phosphorothioation on recombination frequency. The results described in this work provide further mechanistic insight into recombineering, and substantially improve recombineering performance.

Download full-text

Full-text

Available from: George Church, Mar 20, 2015
2 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional metabolic engineering analyzes biosynthetic and physiological pathways, identifies bottlenecks, and makes targeted genetic modifications with the ultimate goal of increasing the production of high-value products in living cells. Such efforts have led to the development of a variety of organisms with industrially relevant properties. However, there are a number of cellular phenotypes important for research and the industry for which the rational selection of cellular targets for modification is not easy or possible. In these cases, strain engineering can be alternatively carried out using "inverse metabolic engineering", an approach that first generates genetic diversity by subjecting a population of cells to a particular mutagenic process, and then utilizes genetic screens or selections to identify the clones exhibiting the desired phenotype. Given the availability of an appropriate screen for a particular property, the success of inverse metabolic engineering efforts usually depends on the level and quality of genetic diversity which can be generated. Here, we review classic and recently developed combinatorial approaches for creating such genetic diversity and discuss the use of these methodologies in inverse metabolic engineering applications.
    10/2012; 3(4):e201210021. DOI:10.5936/csbj.201210021
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest.
    Current Opinion in Biotechnology 03/2013; 24(6). DOI:10.1016/j.copbio.2013.03.003 · 8.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli, as well as Multiplex Automated Genome Engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.
    Biotechnology advances 04/2013; 31(6). DOI:10.1016/j.biotechadv.2013.04.003 · 8.91 Impact Factor
Show more