Understanding CT Dose Display

The Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland.
Journal of the American College of Radiology: JACR (Impact Factor: 2.84). 09/2012; 9(9):669-71. DOI: 10.1016/j.jacr.2012.06.003
Source: PubMed
0 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The aims of this study were to measure the effectiveness of a multidisciplinary CT dose optimization committee and estimate its costs and to describe a radiation stewardship quality improvement initiative in one CT department at a medium-sized community hospital system that used a participatory design committee methodology. Methods: A CT dose optimization committee was conceived, funded, and formed, consisting of the following stakeholders: radiologists, technologists, consultant medical physicists, and an administrator. Volume CT dose index (CTDIvol) and repeat rate were monitored for 1 month, for one scan type, during which iterative protocol adjustments were made through committee interaction. Effects on repeat rate and CTDIvol were quantified and benchmarked against national diagnostic reference levels after retrospective medical record review of 100 consecutive patients before and after the intervention. Labor hours were reported and wage resources estimated. Results: Over 3 months, the committee met in person twice and exchanged 128 e-mails in establishing a process for protocol improvement and measurement of success. Repeat rate was reduced from 13% (13 of 100) to 0% (0 of 100). Scans meeting the ACR reference level for CTDIvol (75 mGy) improved by 34% (38 of 100 before, 51 of 100 after; Fisher's exact 2-tailed P = .09), and those meeting ACR pass/fail criterion (80 mGy) improved by 29% (58 of 100 before, 75 of 100 after; Fisher's exact 2-tailed P = .01). Committee evolution and work, and protocol development and implementation, required 57 person-hours, at an estimated labor cost of $12,488. Conclusions: An efficient process was established as a proof of concept for the use of a multidisciplinary committee to reduce patient radiation dose, repeat rate, and variability in image quality. The committee and process ultimately improved the quality of patient care, fostered a culture of safety and ongoing quality improvement, and calculated costs for such an endeavor.
    Journal of the American College of Radiology: JACR 03/2013; 10(6). DOI:10.1016/j.jacr.2012.12.008 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Risks associated to ionising radiation from medical imaging techniques have focused the attention of the medical society and general population. This risk is aimed to determine the probability that a tumour is induced as a result of a computed tomography (CT) examination since it makes nowadays the biggest contribution to the collective dose. Several models of cancer induction have been reported in the literature, with diametrically different implications. This article reviews those models, focusing on the ones used by the scientific community to estimate CT detriments. Current estimates of the probability that a CT examination induces cancer are reported, highlighting its low magnitude (near the background level) and large sources of uncertainty. From this objective review, it is concluded that epidemiological data with more accurate dosimetric estimates are needed. Prediction of the number of tumours that will be induced in population exposed to ionising radiation should be avoided or, if given, it should be accompanied by a realistic evaluation of its uncertainty and of the advantages of CTs. Otherwise they may have a negative impact in both the medical community and the patients. Reducing doses even more is not justified if that compromises clinical image quality in a necessary investigation. Key Points • Predictions of radiation-induced cancer should be discussed alongside benefits of imaging. • Estimates of induced cancers have noticeable uncertainties that should always be highlighted. • There is controversy about the acceptance of the linear no-threshold model. • Estimated extra risks of cancer are close to the background level. • Patients should not be alarmed by potential cancer induction by CT examinations.
    European Radiology 11/2013; 24(3). DOI:10.1007/s00330-013-3047-z · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare the summing method (A) with the complement method (B) for calculating the cumulative lifetime-attributable-risk (LARtot) of tumor incidence and mortality of multiple CT exposures. Method A defines LARtot as the summation of the risk of each separate exposure. Method B was defined as the complement of the probability of inducing no cancer in N separate exposures. The risk of each separate exposure was estimated using dose, gender, and age at exposure (BEIR VII phase 2). Both methods were compared in a simulation and applied to a database of 11,884 patients exposed to multiple CTs. The relative difference between the methods was defined as ΔP%. Simulation confirmed that Method A always overestimates LARtot. ΔP% was proportional to the dose per exposure and the number of exposures. The differences between Methods A and B were small. Average LARtot of tumor incidence was 0.140% (Method A) and 0.139% (Method B) with maxima of 5.70% and 5.56%, respectively. Average LARtot of mortality was 0.085% for both methods, with maxima of 2.20% and 2.18%, respectively. ΔP% was highest (2.43%) for a female patient (3-y old) exposed to eight recurrent scans and a cumulative dose of 144 mSv. Although Method B is more accurate, both methods can be used to estimate the cumulative risk of multiple CT exposures. These results have to be interpreted, however, in the perspective of the uncertainties in the cancer risk model, which have been estimated at a factor of 2 or 3.
    Health physics 04/2014; 106(4):475-83. DOI:10.1097/HP.0000000000000083 · 1.27 Impact Factor
Show more