Investigating structural brain changes of dehydration using voxel-based morphometry.

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
PLoS ONE (Impact Factor: 3.73). 01/2012; 7(8):e44195. DOI: 10.1371/journal.pone.0044195
Source: PubMed

ABSTRACT Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime [Formula: see text]s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The brain responds differently to environmental and internal signals that relates to the stage of development of neural systems. While genetic and epigenetic factors contribute to a premorbid state, hormonal fluctuations in women may alter the set point of migraine. The cyclic surges of gonadal hormones may directly alter neuronal, glial and astrocyte function throughout the brain. Estrogen is mainly excitatory and progesterone inhibitory on brain neuronal systems. These changes contribute to the allostatic load of the migraine condition that most notably starts at puberty in girls.
    Neurobiology of Disease 01/2014; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Study design:This was a prospective cohort observational study.Objective:To determine the effect of dehydration and rehydration on spinal cord cross-sectional area (CSA) measurement on magnetic resonance imaging (MRI).Setting:MRI Research Centre, University of British Columbia, Canada.Methods:Ten healthy subjects (aged 21-32 years) were scanned on a 3T MRI scanner at four time points: (1) baseline, (2) rescan after 1 h, (3) the next day after fasting for a minimum of 14 h and (4) after rehydration with 1.5 l of water over the course of 1 h. Two independent, established semi-automatic CSA measurement techniques (one based on two-dimensional (2D) edge detection, the other on three-dimensional (3D) surface fitting) were applied to a 3D T1-weighted scan of each subject at each time point, with the operator blinded to scan order. The percentage change in CSA from baseline to each subsequent time point was calculated. One-tailed paired t-tests were used to assess the significance of the changes from baseline.Results:A decrease in CSA following dehydration was detected by both measurement methods, with a mean change of -0.654% (s.d.=0.778, P<0.05) and -0.650% (s.d.=1.071, P<0.05) for the first and second methods, respectively.Conclusion:Dehydration can confound CSA measurements on MRI. The magnitude of the effect is significant relative to short-term pathological changes that have been observed in diseases such as multiple sclerosis.Spinal Cord advance online publication, 29 April 2014; doi:10.1038/sc.2014.66.
    Spinal Cord 04/2014; · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and can improve cognitive function. Exercise has been promoted as a possible prevention for neurodegenerative diseases. Exercise will have a positive influence on cognition and it increases the brain-derived neurotrophic factor, an essential neurotrophin. Several dietary components have been identified as having effects on cognitive abilities. In particular, polyphenols have been reported to exert their neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning, and cognitive function. Dietary factors can affect multiple brain processes by regulating neurotransmitter pathways, synaptic transmission, membrane fluidity, and signal-transduction pathways. Flavonols are part of the flavonoid family that is found in various fruits, cocoa, wine, tea and beans. Although the antioxidant effects of flavonols are well established in vitro, there is general agreement that flavonols have more complex actions in vivo. Several cross-sectional and longitudinal studies have shown that a higher intake of flavonoids from food may be associated with a better cognitive evolution. Whether this reflects a causal association remains to be elucidated. Several studies have tried to 'manipulate' the brain in order to postpone central fatigue. Most studies have clearly shown that in normal environmental circumstances these interventions are not easy to perform. There is accumulating evidence that rinsing the mouth with a carbohydrate solution will improve endurance performance. There is a need for additional well controlled studies to explore the possible impact of diet and nutrition on brain functioning.
    Sports medicine (Auckland, N.Z.). 05/2014; 44 Suppl 1:47-56.


Available from
Jun 2, 2014