Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e44195. DOI: 10.1371/journal.pone.0044195
Source: PubMed

ABSTRACT Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime [Formula: see text]s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful in vivo measure of irreversible tissue loss. These measurements, however, can be influenced by reversible factors such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether an estimate of T2 relaxation time would correlate with brain volume changes induced by physiologically manipulating hydration status. We used a clinically feasible estimate of T2 (“pseudo-T2”) computed from a dual turbo spin-echo MRI sequence and correlated pseudo-T2 changes to percent brain volume changes in 12 healthy subjects after dehydration overnight (16-hour thirsting) and rehydration (drinking 1.5 L of water). We found that the brain volume significantly increased between the dehydrated and rehydrated states (mean brain volume change = 0.36%, p = 0.0001) but did not change significantly during the dehydration interval (mean brain volume change = 0.04%, p = 0.57). The changes in brain volume and pseudo-T2 significantly correlated with each other, with marginal and conditional correlations (R2) of 0.44 and 0.65, respectively. Our results show that pseudo-T2 may be used in conjunction with the measures of brain volume to distinguish reversible water fluctuations and irreversible brain tissue loss (atrophy) and to investigate disease mechanisms related to neuro-inflammation, e.g., in multiple sclerosis, where edema-related water fluctuations may occur with disease activity and anti-inflammatory treatment.
    01/2014; 6. DOI:10.1016/j.nicl.2014.08.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar depression (BD) is a common psychiatric illness characterized by deficits in emotional and cognitive processing. Abnormalities in the subregions of the insula are common findings in neuroanatomical studies of patients with bipolar disorder. However, the specific relationships between morphometric changes in specific insular subregions and the pathogenesis of BD are not clear. In this study, structural magnetic resonance imaging (MRI) was used to investigate gray matter volume abnormalities in the insular subregion in 27 patients with BD and in 27 age and sex-matched controls. Using DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry (VBM), we examined changes in regional gray matter volumes of the insula in patients with BD. As compared with healthy controls, the BD patients showed decreased gray matter volumes in the right posterior insula and left ventral anterior insula and increased gray matter volumes in the left dorsal anterior insula. Consistent with the emerging theory of insular interference as a contributor to emotional-cognitive dysregulation, the current findings suggest that the insular cortex may be involved in the neural substrates of BD.
    Psychiatry Research Neuroimaging 08/2014; 224(2). DOI:10.1016/j.pscychresns.2014.08.004 · 2.83 Impact Factor
  • Source
    Frontiers in Behavioral Neuroscience 09/2014; 8:351. DOI:10.3389/fnbeh.2014.00351 · 4.16 Impact Factor


Available from
Jun 2, 2014