The Taxonomic Significance of Species That Have Only Been Observed Once: The Genus Gymnodinium (Dinoflagellata) as an Example

Université Paris Sud, France
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e44015. DOI: 10.1371/journal.pone.0044015
Source: PubMed

ABSTRACT Taxonomists have been tasked with cataloguing and quantifying the Earth's biodiversity. Their progress is measured in code-compliant species descriptions that include text, images, type material and molecular sequences. It is from this material that other researchers are to identify individuals of the same species in future observations. It has been estimated that 13% to 22% (depending on taxonomic group) of described species have only ever been observed once. Species that have only been observed at the time and place of their original description are referred to as oncers. Oncers are important to our current understanding of biodiversity. They may be validly described species that are members of a rare biosphere, or they may indicate endemism, or that these species are limited to very constrained niches. Alternatively, they may reflect that taxonomic practices are too poor to allow the organism to be re-identified or that the descriptions are unknown to other researchers. If the latter are true, our current tally of species will not be an accurate indication of what we know. In order to investigate this phenomenon and its potential causes, we examined the microbial eukaryote genus Gymnodinium. This genus contains 268 extant species, 103 (38%) of which have not been observed since their original description. We report traits of the original descriptions and interpret them in respect to the status of the species. We conclude that the majority of oncers were poorly described and their identity is ambiguous. As a result, we argue that the genus Gymnodinium contains only 234 identifiable species. Species that have been observed multiple times tend to have longer descriptions, written in English. The styles of individual authors have a major effect, with a few authors describing a disproportionate number of oncers. The information about the taxonomy of Gymnodinium that is available via the internet is incomplete, and reliance on it will not give access to all necessary knowledge. Six new names are presented - Gymnodinium campbelli for the homonymous name Gymnodinium translucens Campbell 1973, Gymnodinium antarcticum for the homonymous name Gymnodinium frigidum Balech 1965, Gymnodinium manchuriensis for the homonymous name Gymnodinium autumnale Skvortzov 1968, Gymnodinium christenum for the homonymous name Gymnodinium irregulare Christen 1959, Gymnodinium conkufferi for the homonymous name Gymnodinium irregulare Conrad & Kufferath 1954 and Gymnodinium chinensis for the homonymous name Gymnodinium frigidum Skvortzov 1968.

Download full-text


Available from: Anne Thessen, Aug 07, 2015
1 Follower
  • Source
    • "Unfortunately, at present it is often tedious, even with the help of new technologies, to obtain information on a taxonomic name, either to track its origins and subsequent use, or to verify that it has been correctly used. Taxonomists have to consult primary literature because they consider that online resources are incomplete (Thessen et al. 2012, Franz et al. 2008). Nowadays, species identification errors come from diverse causes: the variation in data quality and cross-linkages between databases, an inadequate updating of information and the lack of a single authoritative world taxonomic resource for the definition of the taxa cause. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper introduces a new method of automatically extracting, integrating and presenting information regarding species from the most relevant online taxonomic resources. First, the information is extracted and joined using data wrappers and integration solutions. Then, an analytical tool is used to provide a visual representation of the data. The information is then integrated into a user friendly content management system. The proposal has been implemented using data from the Global Biodiversity Information Facility (GBIF), the Catalogue of Life (CoL), the World Register of Marine Species (WoRMS), the Integrated Taxonomic Information System (ITIS) and the Global Names Index (GNI). The approach improves data quality, avoiding taxonomic and nomenclature errors whilst increasing the availability and accessibility of the information.
    ZooKeys 12/2014; 463(463):133. DOI:10.3897/zookeys.463.8397 · 0.92 Impact Factor
  • Source
    • "Scale bars = 2 lm for (A–D), 1 lm for (E), and 0.2 lm for (F–I). Stein (1878) established the genus Gymnodinium, and it is one of the largest dinoflagellate genera (Re~ n e et al. 2011; Thessen et al. 2012). Previously the Gymnodinium species were differentiated from the unarmored dinoflagellates Gyrodinium, Amphidinium, and Katodinium by the relative sizes of the epicone and hypocone and the degree of the cingular displacement (Kofoid and Swezy 1921). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1-5.8S-ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and as major accessory pigment peridinin, which are 4 key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3-10.9 μm long and 5.1-10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4-0.6 x cell length while in other known Gymnodinium species it is less than 0.3 x cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1-5.8S-ITS2, and LSU rDNA region differed by 1.5-3.8%, 6.0-17.4%, and 9.1-17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp. This article is protected by copyright. All rights reserved.
    Journal of Eukaryotic Microbiology 12/2013; DOI:10.1111/jeu.12098 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The archamoebae form a small clade of anaerobic/microaerophilic flagellates or amoebae, comprising the pelobionts (mastigamoebids and pelomyxids) and the entamoebae. It is a member of the eukaryotic supergroup Amoebozoa. We examined 22 strains of 13 species of Mastigamoeba, Pelomyxa and Rhizomastix by light-microscopy and determined their SSU rRNA gene sequences. The SSU rRNA gene sequences of Pelomyxa palustris and Mastigella commutans in GenBank are shown to belong to P. stagnalis and Mastigamoeba punctachora, respectively. Five new species of free-living archamoebae are described: Mastigamoeba abducta, M. errans, M. guttula, M. lenta, and Rhizomastix libera spp. nov. A species of Mastigamoeba possibly living endosymbiotically in Pelomyxa was identified. Rhizomastix libera, the first known free-living member of that genus, is shown to be an archamoeba. R. libera possesses an ultrastructure unique within archamoebae: a rhizostyle formed from a modified microtubular cone and a flagellum with vanes. While many nominal species of pelobionts are extremely hard to distinguish by light microscopy, transient pseudopodial characters are worthy of further investigation as taxonomic markers.
    Protist 01/2013; 164(3). DOI:10.1016/j.protis.2012.11.005 · 3.56 Impact Factor
Show more