Article

Bats track and exploit changes in insect pest populations.

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America.
PLoS ONE (Impact Factor: 3.73). 01/2012; 7(8):e43839. DOI: 10.1371/journal.pone.0043839
Source: PubMed

ABSTRACT The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators.

0 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function - in this case bat population numbers - is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.
    PLoS ONE 01/2014; 9(2):e87912. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Predicting whether a predator is capable of affecting the dynamics of a prey species in the field implies the analysis of the complete diet of the predator, not simply rates of predation on a target taxon. Here, we employed the Ion Torrent next-generation sequencing technology to investigate the diet of a generalist arthropod predator. A complete dietary analysis requires the use of general primers, but these will also amplify the predator unless suppressed using a blocking probe. However, blocking probes can potentially block other species, particularly if they are phylogenetically close. Here, we aimed to demonstrate that enough prey sequence could be obtained without blocking probes. In communities with many predators, this approach obviates the need to design and test numerous blocking primers, thus making analysis of complex community food webs a viable proposition. We applied this approach to the analysis of predation by the linyphiid spider Oedothorax fuscus in an arable field. We obtained over two million raw reads. After discarding the low-quality and predator reads, the libraries still contained over 61 000 prey reads (3% of the raw reads; 6% of reads passing quality control). The libraries were rich in Collembola, Lepidoptera, Diptera and Nematoda. They also contained sequences derived from several spider species and from horticultural pests (aphids). Oedothorax fuscus is common in UK cereal fields, and the results showed that it is exploiting a wide range of prey. Next-generation sequencing using general primers but without blocking probes provided ample sequences for analysis of the prey range of this spider and proved to be a simple and inexpensive approach.
    Molecular Ecology Resources 08/2013; · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Temperate winters produce extreme energetic challenges for small insectivorous mammals. Some bat species inhabiting locations with mild temperate winters forage during brief inter-torpor normothermic periods of activity. However, the winter diet of bats in mild temperate locations is studied infrequently. Although microscopic analyses of faeces have traditionally been used to characterise bat diet, recently the coupling of PCR with second generation sequencing has offered the potential to further advance our understanding of animal dietary composition and foraging behaviour by allowing identification of a much greater proportion of prey items often with increased taxonomic resolution. We used morphological analysis and Illumina-based second generation sequencing to study the winter diet of Natterer’s bat (Myotis nattereri) and compared the results obtained from these two approaches. For the first time, we demonstrate the applicability of the Illumina MiSeq platform as a data generation source for bat dietary analyses. Results: Faecal pellets collected from a hibernation site in southern England during two winters (December-March 2009–10 and 2010–11), indicated that M. nattereri forages throughout winter at least in a location with a mild winter climate. Through morphological analysis, arthropod fragments from seven taxonomic orders were identified. A high proportion of these was non-volant (67.9% of faecal pellets) and unexpectedly included many lepidopteran larvae. Molecular analysis identified 43 prey species from six taxonomic orders and confirmed the frequent presence of lepidopteran species that overwinter as larvae. Conclusions: The winter diet of M. nattereri is substantially different from other times of the year confirming that this species has a wide and adaptable dietary niche. Comparison of DNA derived from the prey to an extensive reference dataset of potential prey barcode sequences permitted fine scale taxonomic resolution of prey species. The high occurrence of non-volant prey suggests that gleaning allows prey capture at low ambient temperatures when the abundance of flying insects may be substantially reduced. Interesting questions arise as to how M. nattereri might successfully locate and capture some of the non-volant prey species encountered in its faeces. The consumption of lepidopteran larvae such as cutworms suggests that M. nattereri eats agricultural pest species.
    Frontiers in Zoology 01/2014; 11:39. · 3.87 Impact Factor

Full-text (2 Sources)

View
32 Downloads
Available from
May 31, 2014