Rv2190c, an NlpC/P60 Family Protein, Is Required for Full Virulence of Mycobacterium tuberculosis

University of Padova, Italy
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e43429. DOI: 10.1371/journal.pone.0043429
Source: PubMed

ABSTRACT Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) possesses at least five genes predicted to encode proteins with NlpC/P60 hydrolase domains, including the relatively uncharacterized Rv2190c. As NlpC/P60 domain-containing proteins are associated with diverse roles in bacterial physiology, our objective was to characterize Rv2190c in M. tuberculosis growth and virulence. Our data indicate that lack of Rv2190c is associated with impaired growth, both in vitro and during an in vivo mouse model of TB. These growth defects are associated with altered colony morphology and phthiocerol dimycocerosate levels, indicating that Rv2190c is involved in cell wall maintenance and composition. In addition, we have demonstrated that Rv2190c is expressed during active growth phase and that its protein product is immunogenic during infection. Our findings have significant implications, both for better understanding the role of Rv2190c in M. tuberculosis biology and also for translational developments.


Available from: Haidan Guo, May 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cell-free supernatant (CFS) from Lactobacillus paracasei NRRL B-50314 culture has been previously reported as containing antibacterial activity against a wide variety of Gram-positive bacteria. The CFS protein gel slice corresponding to antibacterial activities was subjected to trypsin digestion and ion trap MASS (Gel/LC-MS/MS) analysis. BlastP search of the resulted IQAVISIAEQQIGKP sequence led to a hypothetical cell-wall associated hydrolase (designated as CWH here) from Lactobacillus paracasei ATCC 25302. Further analyses of CWH revealed that the IQAVISIAEQQIGKP belongs to a highly conserved region of the NlpC/P60 superfamily. The L. paracasei NRRL B-50314 CWH gene, cloned in pStrepHIS1525CWH477, was introduced into Bacillus megaterium MS 941. The production of CWH477 protein was induced by xylose. The CWH477 protein was purified by using NiNTA column, and elution fraction E2 showed highest antibacterial activity. This study and bioinformatics analyses suggested that the antibacterial activity of CWH could originate from its cell wall degrading enzymatic function.
    Journal of Industrial Microbiology and Biotechnology 12/2014; 42(2). DOI:10.1007/s10295-014-1557-6 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.
    Frontiers in Microbiology 02/2015; 6. DOI:10.3389/fmicb.2015.00016 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial growth and cell division are coordinated with hydrolysis of the peptidoglycan (PG) layer of the cell wall, but the mechanisms of regulation of extracellular PG hydrolases are not well understood. Here we report the biochemical, structural, and genetic analysis of the Mycobacterium tuberculosis homolog of the transmembrane PG-hydrolase regulator, FtsX. The purified FtsX extracellular domain binds the PG peptidase Rv2190c/RipC N-terminal segment, causing a conformational change that activates the enzyme. Deletion of ftsEX and ripC caused similar phenotypes in Mycobacterium smegmatis, as expected for genes in a single pathway. The crystal structure of the FtsX extracellular domain reveals an unprecedented fold containing two lobes connected by a flexible hinge. Mutations in the hydrophobic cleft between the lobes reduce RipC binding in vitro and inhibit FtsX function in M. smegmatis. These studies suggest how FtsX recognizes RipC and support a model in which a conformational change in FtsX links the cell division apparatus with PG hydrolysis.
    Proceedings of the National Academy of Sciences 05/2014; 111(22). DOI:10.1073/pnas.1321812111 · 9.81 Impact Factor