29 Mammalian Genomes Reveal Novel Exaptations of Mobile Elements for Likely Regulatory Functions in the Human Genome

Academia Sinica, Taiwan
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e43128. DOI: 10.1371/journal.pone.0043128
Source: PubMed

ABSTRACT Recent research supports the view that changes in gene regulation, as opposed to changes in the genes themselves, play a significant role in morphological evolution. Gene regulation is largely dependent on transcription factor binding sites. Researchers are now able to use the available 29 mammalian genomes to measure selective constraint at the level of binding sites. This detailed map of constraint suggests that mammalian genomes co-opt fragments of mobile elements to act as gene regulatory sequence on a large scale. In the human genome we detect over 280,000 putative regulatory elements, totaling approximately 7 Mb of sequence, that originated as mobile element insertions. These putative regulatory regions are conserved non-exonic elements (CNEEs), which show considerable cross-species constraint and signatures of continued negative selection in humans, yet do not appear in a known mature transcript. These putative regulatory elements were co-opted from SINE, LINE, LTR and DNA transposon insertions. We demonstrate that at least 11%, and an estimated 20%, of gene regulatory sequence in the human genome showing cross-species conservation was co-opted from mobile elements. The location in the genome of CNEEs co-opted from mobile elements closely resembles that of CNEEs in general, except in the centers of the largest gene deserts where recognizable co-option events are relatively rare. We find that regions of certain mobile element insertions are more likely to be held under purifying selection than others. In particular, we show 6 examples where paralogous instances of an often co-opted mobile element region define a sequence motif that closely matches a transcription factor's binding profile.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
    Cold Spring Harbor perspectives in biology 07/2014; 6(12). DOI:10.1101/cshperspect.a016089 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of noncoding drivers from thousands of somatic alterations in a typical tumor is a difficult and unsolved problem. We report a computational framework, FunSeq2, to annotate and prioritize these mutations. The framework combines an adjustable data context integrating large-scale genomics and cancer resources with a streamlined variant-prioritization pipeline. The pipeline has a weighted scoring system combining: inter- and intra-species conservation; loss- and gain-of-function events for transcription-factor binding; enhancer-gene linkages and network centrality; and per-element recurrence across samples. We further highlight putative drivers with information specific to a particular sample, such as differential expression. FunSeq2 is available from Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0480-5) contains supplementary material, which is available to authorized users.
    Genome Biology 10/2014; 15(10):480. DOI:10.1186/PREACCEPT-1739683221127290 · 10.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: LTR retrotransposons are major components of plant genomes. They are regulated by a diverse array of external stresses and tissue culture conditions, displaying finely tuned responses to these stimuli, mostly in the form of upregulation. Second to stress conditions and tissue culture, meristems are also permissive for LTR retrotransposon expression, suggesting that a dedifferentiated cell status may represent a frequent activating condition. LTR regions are highly plastic and contain regulatory motifs similar to those of cellular genes. The activation of LTR retrotransposons results from interplay between the release of epigenetic silencing and the recruitement by LTRs of specific regulatory factors. Despite the role of LTR retrotransposons in driving plant genome diversification, convincing evidence for major mobilizations of LTR retrotransposons remains much rarer than observations of massive bursts of transcriptional upregulation. Current evidence suggests that LTR retrotransposon expression may be involved in host functional plasticity, acting as dispersed regulatory modules able to redirect stress stimuli to adjacent plant genes. This may be of crucial importance for plants that cannot escape stress, and have evolved complex and highly coordinated responses to external challenges. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 07/2014; DOI:10.1016/j.bbagrm.2014.07.017 · 5.44 Impact Factor


Available from