Article

SINE Retrotransposons Cause Epigenetic Reprogramming of Adjacent Gene Promoters

MD Anderson Cancer Center, 1515 Holcombe Boulevard, unit 1000, Houston, TX 77030. .
Molecular Cancer Research (Impact Factor: 4.5). 09/2012; 10(10):1332-42. DOI: 10.1158/1541-7786.MCR-12-0351
Source: PubMed

ABSTRACT Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element. Mol Cancer Res; 10(10); 1332-42. ©2012 AACR.

1 Follower
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations between DNA hypomethylation and regions corresponding to those which, in somatic cells, are enriched in the repressive histone mark H3K9me3, and between DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that the relationship between chromatin context and aberrant DNA methylation of sperm in infertile men could be locus-dependent. Finally, we also show that DNA methylation patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower DNA methylation levels than controls. Our results are descriptive and further studies would be needed to elucidate the functional effects of aberrant DNA methylation on male fertility. Overall, our data suggest that aberrant sperm DNA methylation might contribute to fertility impairment in couples with unexplained infertility and they provide a promising basis for future research. This work has been financially supported by Fundación Cientifica de la AECC (to R.G.U.); IUOPA (to G.F.B.); FICYT (to E.G.T.); the Spanish National Research Council (CSIC; 200820I172 to M.F.F.); Fundación Ramón Areces (to M.F.F); the Plan Nacional de I+D+I 2008-2011/2013-2016/FEDER (PI11/01728 to AF.F., PI12/01080 to M.F.F. and PI12/00361 to S.L.); the PN de I+D+I 2008-20011 and the Generalitat de Catalunya (2009SGR01490). A.F.F. is sponsored by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación (CP11/00131). S.L. is sponsored by the Researchers Stabilization Program from the Spanish National Health System (CES09/020). The IUOPA is supported by the Obra Social Cajastur, Spain. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Reproduction 03/2015; DOI:10.1093/humrep/dev053 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. Results We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples. Conclusion Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.
    BMC Genomics 05/2015; 16(1). DOI:10.1186/s12864-015-1552-y · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide DNA methylation at a single nucleotide resolution in different primary cells of the mammalian genome helps to determine the characteristics and functions of tissue-specific hypomethylated regions (TS-HMRs). We determined genome-wide cytosine methylation maps at 91X and 36X coverage of newborn female mouse primary dermal fibroblasts and keratinocytes and compared with mRNA-seq gene expression data. These high coverage methylation maps were used to identify HMRs in both cell types. A total of 2.91% of the genome are in keratinocyte HMRs, and 2.15% of the genome are in fibroblast HMRs with 1.75% being common. Half of the TS-HMRs are extensions of common HMRs, and the remaining are unique TS-HMRs. Four levels of CG methylation are observed: 1) total unmethylation for CG dinucleotides in HMRs in CGIs that are active in all tissues; 2) 10% to 40% methylation for TS-HMRs; 3) 60% methylation for TS-HMRs in cells types where they are not in HMRs; and 4) 70% methylation for the nonfunctioning part of the genome. SINE elements are depleted inside the TS-HMRs, while highly enriched in the surrounding regions. Hypomethylation at the last exon shows gene repression, while demethylation toward the gene body positively correlates with gene expression. The overlapping HMRs have a more complex relationship with gene expression. The common HMRs and TS-HMRs are each enriched for distinct Transcription Factor Binding Sites (TFBS). C/EBPβ binds to methylated regions outside of HMRs while CTCF prefers to bind in HMRs, highlighting these two parts of the genome and their potential interactions. Keratinocytes and fibroblasts are of epithelial and mesenchymal origin. High-resolution methylation maps in these two cell types can be used as reference methylomes for analyzing epigenetic mechanisms in several diseases including cancer. Please see related article at the following link: http://www.epigeneticsandchromatin.com/content/7/1/34.
    Epigenetics & Chromatin 12/2014; 7:35. DOI:10.1186/1756-8935-7-35 · 4.46 Impact Factor