Article

Targeting malignant mitochondria with therapeutic peptides.

Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA.
Therapeutic delivery 08/2012; 3(8):961-79. DOI: 10.4155/tde.12.75
Source: PubMed

ABSTRACT The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondira often rely on disruption of protein--protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion.

2 Followers
 · 
147 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was performed to examine whether Endothelial-monocyte-activating polypeptide II (EMAP II) could inhibit glioma growth by inducing rat brain glioma C6 cells apoptosis. The results revealed that the EMAP II decreased cell viability of rat C6 glioma cells in a time-dependent manner. Apoptotic proportion was increased gradually after EMAP II. EMAP II induced the decrease in mitochondrial membrane potential and the release of cytochrome c into the cytosol, followed by activation of caspase-9 and caspase-3. Meanwhile, EMAP II-induced apoptosis was accompanied by an increase of reactive oxygen species (ROS). The significant up-regulation in the expressions of Bax and Apaf-1 as well as down-regulation in the expression of Bcl-2 was observed. The time course change of ROS was prior to the changes of above investigated indexes. All of these results strongly suggest that EMAP II could induce rat C6 glioma cells apoptosis via the mitochondrial pathway, and ROS, Bax/Bcl-2 might be involved in this processing. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 01/2015; 457(4). DOI:10.1016/j.bbrc.2015.01.030 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphipathic tail-anchoring peptide (ATAP) derived from the human anti-apoptotic protein Bfl-1 is a potent inducer of apoptosis by targeting mitochondria permeability transition. By linking ATAP to an internalizing RGD peptide (iRGD), selective targeting for ATAP to tumor cell was achieved. Confocal fluorescence microscopy showed that ATAP-iRGD could penetrate into cancer cells and distribute along the mitochondria network. ATAP-iRGD triggered mitochondria-dependent cell death through release of cytochrome c. In an effort to promote ATAP-iRGD physiochemical properties to approach clinic application, amino acid substitution and chemical modification were made with ATAP-iRGD to improve its bioactivity. One of these modified peptides, ATAP-iRGD-M8, was with improved stability and aqueous solubility without compromising in vitro cytotoxicity in cultured cancer cells. In vivo xenograft studies with multiple prostate cancer cell lines showed that intravenous administration of ATAP-iRGD-M8 suppressed tumor growth. Toxicological studies revealed that repetitive intravenous administration of ATAP-iRGD-M8 did not produce significant toxicity in the SV129 mice. Our data suggest that ATAP-iRGD-M8 is a promising agent with high selectivity and limited systemic toxicity for prostate cancer treatment.
    Oncotarget 07/2014; 5(17). DOI:10.1016/j.bpj.2013.11.1049 · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target-specificity, which impede their clinical applications. To this end, we report magnetic core-shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic Amphipathic Tail-Anchoring Peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis.
    ACS Nano 08/2014; 8(9). DOI:10.1021/nn503431x · 12.03 Impact Factor

Preview

Download
1 Download
Available from