Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen

Department of Pathology.
Human Molecular Genetics (Impact Factor: 6.68). 09/2012; 22(1). DOI: 10.1093/hmg/dds371
Source: PubMed

ABSTRACT Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the genetic heterogeneity in osteogenesis imperfecta (OI), proposed in 1979 by Sillence et al., has been confirmed with molecular genetic studies. At present, 17 genetic causes of OI and closely related disorders have been identified and it is expected that more will follow. Unlike most reviews that have been published in the last decade on the genetic causes and biochemical processes leading to OI, this review focuses on the clinical classification of OI and elaborates on the newly proposed OI classification from 2010, which returned to a descriptive and numerical grouping of five OI syndromic groups. The new OI nomenclature and the pre-and postnatal severity assessment introduced in this review, emphasize the importance of phenotyping in order to diagnose, classify, and assess severity of OI. This will provide patients and their families with insight into the probable course of the disorder and it will allow physicians to evaluate the effect of therapy. A careful clinical description in combination with knowledge of the specific molecular genetic cause is the starting point for development and assessment of therapy in patients with heritable disorders including OI. © 2014 The Authors. American Journal of Medical Genetics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
    American Journal of Medical Genetics Part A 06/2014; 164(6). DOI:10.1002/ajmg.a.36545 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal recessive osteogenesis imperfecta (AR-OI) is an inherited condition which in recent years has been shown with increasing genetic and clinical heterogeneity. In this article, we performed clinical assessment and sought mutations in patients from 10 unrelated families with AR-OI, one of whom was presented with the additional features of Bruck syndrome (BS). Pathogenic changes were identified in five different genes: three families had mutations in FKBP10, three in SERPINF1, two in LEPRE1, one in CRTAP, and one in PPIB. With the exception of a FKBP10 mutation in the BS case, all changes are novel. Of note, insertion of an AluYb8 repetitive element was detected in exon 6 of SERPINF1. Since the studied patients had variable manifestations and some distinctive features, genotype/phenotype correlations are suggested. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 06/2013; 161A(6). DOI:10.1002/ajmg.a.35938 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl 3-hydroxylase1 (P3H1) is a collagen modifying enzyme which hydroxylates certain prolines in the Xaa position of conventional GlyXaaYaa triple helical sequence. Recent investigations have revealed that mutations in the LEPRE1 (gene encoding for P3H1) cause severe osteogenesis imperfecta (OI) in humans. Similarly LEPRE1 knockout mice display an OI-like phenotype. Significant hearing loss is a common problem for people with osteogenesis imperfecta. Here we report that hearing of the P3H1 null mice is substantially affected. Auditory brainstem responses (ABRs) of the P3H1 null mice show an average increase of 20-30dB in auditory thresholds. Three dimensional reconstructions of the mutant middle ear bones by Micro-scale X-ray computed tomography (Micro-CT) demonstrate abnormal morphology of the incudostapedial and incudomalleal joints. We establish the LEPRE1 knockout mouse as a valuable model system to investigate the mechanism of hearing loss in recessive OI.
    Matrix biology: journal of the International Society for Matrix Biology 11/2012; 32(1). DOI:10.1016/j.matbio.2012.11.006 · 3.65 Impact Factor