The Mre11 Nuclease Is Critical for the Sensitivity of Cells to Chk1 Inhibition

Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(8):e44021. DOI: 10.1371/journal.pone.0044021
Source: PubMed

ABSTRACT The Chk1 kinase is required for the arrest of cell cycle progression when DNA is damaged, and for stabilizing stalled replication forks. As a consequence, many Chk1 inhibitors have been developed and tested for their potential to enhance DNA damage-induced tumor cell killing. However, inhibition of Chk1 alone, without any additional exogenous agent, can be cytotoxic. Understanding the underlying mechanisms of this sensitivity is critical for defining which patients might respond best to therapy with Chk1 inhibitors. We have investigated the mechanism of sensitivity in U2OS osteosarcoma cells. Upon incubation with the Chk1 inhibitor MK-8776, single-stranded DNA regions (ssDNA) and double-strand breaks (DSB) begin to appear within 6 h. These DSB have been attributed to the structure-specific DNA endonuclease, Mus81. The Mre11/Rad50/Nbs1 complex is known to be responsible for the resection of DSB to ssDNA. However, we show that inhibition of the Mre11 nuclease activity leads, not only to a decrease in the amount of ssDNA following Chk1 inhibition, but also inhibits the formation of DSB, suggesting that DSB are a consequence of ssDNA formation. These findings were corroborated by the discovery that Mre11-deficient ATLD1 cells are highly resistant to MK-8776 and form neither ssDNA nor DSB following treatment. However, once complimented with exogenous Mre11, the cells accumulate both ssDNA and DSB when incubated with MK-8776. Our findings suggest that Mre11 provides the link between aberrant activation of Cdc25A/Cdk2 and Mus81. The results highlight a novel role for Mre11 in the production of DSB and may help define which tumors are more sensitive to MK-8776 alone or in combination with DNA damaging agents.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Replication stress and DNA damage activate the ATR-CHK1 checkpoint signaling pathway that licenses repair and cell survival processes. In this study, we examined the respective roles of the ATR and CHK1 kinases in ovarian cancer cells using genetic and pharmacological inhibitors of in combination with cisplatin, topotecan, gemcitabine and the poly(ADP-ribose)-polymerase (PARP) inhibitor veliparib (ABT-888), four agents with clinical activity in ovarian cancer. RNAi-mediated depletion or inhibition of ATR sensitized ovarian cancer cells to all four agents. In contrast, while cisplatin, topotecan and gemcitabine each activated CHK1, RNAi-mediated depletion or inhibition of this kinase in cells sensitized them only to gemcitabine. Unexpectedly, we found that neither the ATR kinase inhibitor VE-821 or the CHK1 inhibitor MK-8776 blocked ATR-mediated CHK1 phosphorylation or autophosphorylation, two commonly used readouts for inhibition of the ATR-CHK1 pathway. Instead, their ability to sensitize cells correlated with enhanced CDC25A levels. Additionally, we also found that VE-821 could further sensitize BRCA1-depleted cells to cisplatin, topotecan and veliparib beyond the potent sensitization already caused by their deficiency in homologous recombination. Taken together, our results established that ATR and CHK1 inhibitors differentially sensitize ovarian cancer cells to commonly used chemotherapy agents, and that CHK1 phosphorylation status may not offer a reliable marker for inhibition of the ATR-CHK1 pathway. A key implication of our work is the clinical rationale it provides to evaluate ATR inhibitors in combination with PARP inhibitors in BRCA1/2-deficient cells.
    Cancer Research 04/2013; 73(12). DOI:10.1158/0008-5472.CAN-13-0110 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many anticancer agents damage DNA and activate cell cycle checkpoints that permit time for the cells to repair their DNA and recover. These checkpoints have undergone intense investigation as potential therapeutic targets, and Chk1 inhibitors have emerged as promising novel therapeutic agents. Chk1 was initially recognized as a regulator of the G2/M checkpoint, but has since been demonstrated to have additional roles in replication fork stability, replication origin firing and homologous recombination. Inhibition of these pathways can dramatically sensitize cells to some antimetabolites. Current clinical trials with Chk1 inhibitors are primarily focusing on their combination with gemcitabine. Here, we discuss the mechanisms of, and emerging uses for Chk1 inhibitors as single agents and in combination with antimetabolites. We also discuss the pharmacodynamic issues that need to be addressed in attaining maximum efficacy in vivo. Following administration of gemcitabine to mice and humans, tumor cells accumulate in S phase for at least 24 h before recovering. In addition, stalled replication forks evolve over time to become more Chk1 dependent. We emphasize the need to assess cell cycle perturbation and Chk1 dependence of tumors in patients administered gemcitabine. These assessments will define the optimum dose and schedule for administration of these drug combinations.
    British Journal of Clinical Pharmacology 04/2013; DOI:10.1111/bcp.12139 · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The combination of radiation with chemotherapy is the most effective therapy for unresectable pancreatic cancer. To improve upon this regimen, we combined the selective Chk1 inhibitor, MK8776 with gemcitabine-based chemoradiation in preclinical pancreatic cancer models. We tested the ability of MK8776 to sensitize to gemcitabine-radiation in homologous recombination repair (HRR)- proficient and deficient pancreatic cancer cells and assessed Rad51 focus formation. In vivo, we investigated the efficacy, tumor cell selectivity, and pharmacodynamic biomarkers of sensitization by MK8776. We found that MK8776 significantly sensitized HRR- proficient (AsPC-1, MiaPaCa-2, BxPC-3) but not deficient (Capan-1) pancreatic cancer cells to gemcitabine-radiation and inhibited Rad51 focus formation in HRR-proficient cells. In vivo, MiaPaCa-2 xenografts were significantly sensitized to gemcitabine-radiation by MK8776 without significant weight loss or observable toxicity in the small intestine, the dose limiting organ for chemoradiation therapy in pancreatic cancer. We also assessed pChk1 (S345), a pharmacodynamic biomarker of DNA damage in response to Chk1 inhibition in both tumor and small intestine and found that MK8776 combined with gemcitabine or gemcitabine-radiation produced a significantly greater increase in pChk1 (S345) in tumor relative to small intestine, suggesting greater DNA damage in tumor than in normal tissue. Furthermore, we demonstrated the utility of an ex vivo platform for assessment of pharmacodynamic biomarkers of Chk1 inhibition in pancreatic cancer. Together, our results suggest that MK8776 selectively sensitizes HRR-proficient pancreatic cancer cells and xenografts to gemcitabine-radiation and support the clinical investigation of MK8776 in combination with gemcitabine-radiation in locally advanced pancreatic cancer.
    Clinical Cancer Research 06/2013; 19(16). DOI:10.1158/1078-0432.CCR-12-3748 · 8.19 Impact Factor

Preview (2 Sources)

Available from