Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat

Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic. .
BMC Plant Biology (Impact Factor: 3.81). 08/2012; 12(1):155. DOI: 10.1186/1471-2229-12-155
Source: PubMed


Polyploidization is considered one of the main mechanisms of plant genome evolution. The presence of multiple copies of the same gene reduces selection pressure and permits sub-functionalization and neo-functionalization leading to plant diversification, adaptation and speciation. In bread wheat, polyploidization and the prevalence of transposable elements resulted in massive gene duplication and movement. As a result, the number of genes which are non-collinear to genomes of related species seems markedly increased in wheat.
We used new-generation sequencing (NGS) to generate sequence of a Mb-sized region from wheat chromosome arm 3DS. Sequence assembly of 24 BAC clones resulted in two scaffolds of 1,264,820 and 333,768 bases. The sequence was annotated and compared to the homoeologous region on wheat chromosome 3B and orthologous loci of Brachypodium distachyon and rice. Among 39 coding sequences in the 3DS scaffolds, 32 have a homoeolog on chromosome 3B. In contrast, only fifteen and fourteen orthologs were identified in the corresponding regions in rice and Brachypodium, respectively. Interestingly, five pseudogenes were identified among the non-collinear coding sequences at the 3B locus, while none was found at the 3DS locus.
Direct comparison of two Mb-sized regions of the B and D genomes of bread wheat revealed similar rates of non-collinear gene insertion in both genomes with a majority of gene duplications occurring before their divergence. Relatively low proportion of pseudogenes was identified among non-collinear coding sequences. Our data suggest that the pseudogenes did not originate from insertion of non-functional copies, but were formed later during the evolution of hexaploid wheat. Some evidence was found for gene erosion along the B genome locus.

Download full-text


Available from: Jaroslav Dolezel,
36 Reads
  • Source
    • "Comparative genomics is often used to investigate evolutionary relationships of genomes from different species and serves as an efficient tool for studying genome sequence composition, structure, gene duplications, origin of new genes and colinearity between different genomes [4-8]. Recently, bread wheat has been used to study the origin of species, chromosome rearrangements, structural variations, and amplification of transposable elements in the polyploidization process [7-10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known "green revolution" gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process.
    PLoS ONE 09/2013; 8(9):e75544. DOI:10.1371/journal.pone.0075544 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cycles of whole genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and the model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, thirty five percent of these gene structure rearrangements resulted in frameshift mutations and premature termination codons (PTCs). An increased codon mutation rate in the wheat lineage compared to Brachypodium was found for 17% of orthologs. Discovery of PTCs in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence (42%) between the duplicated homoeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, non-synonymous mutations and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variation, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.
    Plant physiology 11/2012; DOI:10.1104/pp.112.205161 · 6.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 07/2013; 2013:588-591. DOI:10.1109/EMBC.2013.6609568
Show more