Article

DNA Cruciform Arms Nucleate through a Correlated but Asynchronous Cooperative Mechanism

Rudolph Peierls Centre for Theoretical Physics , 1 Keble Road, Oxford OX1 3NP, U.K.
The Journal of Physical Chemistry B (Impact Factor: 3.38). 08/2012; 116(38):11616-25. DOI: 10.1021/jp3080755
Source: PubMed

ABSTRACT Inverted repeat (IR) sequences in DNA can form noncanonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. First, a twist-induced denaturation bubble must diffuse so that its midpoint is near the center of symmetry of the IR sequence. Second, bubble fluctuations must be large enough to allow one of the arms to form a small number of hairpin bonds. Once the first arm is partially formed, the second arm can rapidly grow to a similar size. Because bubbles can twist back on themselves, they need considerably fewer bases to resolve torsional stress than the final cruciform state does. The initially stabilized cruciform therefore continues to grow, which typically proceeds synchronously, reminiscent of the S-type mechanism of cruciform formation. By using umbrella sampling techniques, we calculate, for different temperatures and superhelical densities, the free energy as a function of the number of bonds in each cruciform arm along the correlated but asynchronous nucleation pathways we observed in direct simulations.

Download full-text

Full-text

Available from: Adam Aaron Lawrence Levy, Apr 15, 2014
0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We apply a recently-developed coarse-grained model of DNA, designed to capture the basic physics of nanotechnological DNA systems, to the study of a `burnt-bridges' DNA motor consisting of a single-stranded cargo that steps processively along a track of single-stranded stators. We demonstrate that the model is able to simulate such a system, and investigate the sensitivity of the stepping process to the spatial separation of stators, finding that an increased distance can suppress successful steps due to the build up of unfavourable tension. The mechanism of suppression suggests that varying the distance between stators could be used as a method for improving signal-to-noise ratios for motors that are required to make a decision at a junction of stators.
    Natural Computing 12/2012; 13(4). DOI:10.1007/s11047-013-9391-8 · 0.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use a recently developed coarse-grained model to simulate the overstretching of duplex DNA. Overstretching at 23 °C occurs at 74 pN in the model, about 6-7 pN higher than the experimental value at equivalent salt conditions. Furthermore, the model reproduces the temperature dependence of the overstretching force well. The mechanism of overstretching is always force-induced melting by unpeeling from the free ends. That we never see S-DNA (overstretched duplex DNA), even though there is clear experimental evidence for this mode of overstretching under certain conditions, suggests that S-DNA is not simply an unstacked but hydrogen-bonded duplex, but instead probably has a more exotic structure.
    The Journal of Chemical Physics 02/2013; 138(8):085101. DOI:10.1063/1.4792252 · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.
    ACS Nano 03/2013; 7(3). DOI:10.1021/nn3058483 · 12.03 Impact Factor