Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: a double-blind randomised crossover study

Institute for Risk Assessment Sciences, Utrecht University, PO Box 80178, Utrecht 3508 TD, The Netherlands
Occupational and environmental medicine (Impact Factor: 3.23). 08/2012; 69(10):759-66. DOI: 10.1136/oemed-2011-100468
Source: PubMed

ABSTRACT This study characterises neurocognitive domains that are affected by movement-induced time-varying magnetic fields (TVMF) within a static magnetic stray field (SMF) of a 7 Tesla (T) MRI scanner.
Using a double-blind randomised crossover design, 31 healthy volunteers were tested in a sham (0 T), low (0.5 T) and high (1.0 T) SMF exposure condition. Standardised head movements were made before every neurocognitive task to induce TVMF.
Of the six tested neurocognitive domains, we demonstrated that attention and concentration were negatively affected when exposed to TVMF within an SMF (varying from 5.0% to 21.1% per Tesla exposure, p<0.05), particular in situations were high working memory performance was required. In addition, visuospatial orientation was affected after exposure (46.7% per Tesla exposure, p=0.05).
Neurocognitive functioning is modulated when exposed to movement-induced TVMF within an SMF of a 7 T MRI scanner. Domains that were affected include attention/concentration and visuospatial orientation. Further studies are needed to better understand the mechanisms and possible practical safety and health implications of these acute neurocognitive effects.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Klinisches/methodisches Problem Die räumliche, zeitliche oder spektrale Auflösung der MRT ist heute vielfach nicht ausreichend, um Submillimeterläsionen zu detektieren oder um die Dynamik des Herzschlags darzustellen. Radiologische Standardverfahren Zur Zeit sind MR-Tomographen bei 1,5 oder 3 T die Standardgeräte für klinische Untersuchungen. Methodische Innovationen Der Einsatz ultrahoher Magnetfelder von 7 T verspricht durch die Erhöhung des Signal-zu-Rausch-Verhältnisses eine deutliche Verbesserung der räumlichen und/oder zeitlichen Auflösung sowie die Generierung neuer Kontraste. Leistungsfähigkeit Mit der 7-T-MRT ist es gelungen, MR-Aufnahmen des Hirns routinemäßig mit 0,3 mm Auflösung zu akquirieren. Die theoretisch erwartete Verbesserung des Signal-zu-Rausch-Verhältnisses wird aber auf Grund von B1-Inhomogenitäten und Kontrastvariationen oft nicht erreicht. Bewertung Mit Hilfe der 7-T-MRT kann eine deutliche Erhöhung der räumlichen Auflösung erzielt werden. Techniken wie die Time-of-flight(TOF)-MR-Angiographie und suszeptibilitätsgewichtete Methoden (z. B. die neurofunktionelle MRT) profitieren in verstärktem Maße von den hohen Feldern. Sendefeldinhomogenitäten sind immer noch eine große Herausforderung für die Ultrahochfeld(UHF)-MRT und stellen auch ein nur teilweise gelöstes Sicherheitsproblem dar. Empfehlung für die Praxis Die UHF-MRT ist z. Z. auf spezielle Anwendungsgebiete beschränkt, und der erwartete Gewinn muss oft gegen technische Komplikationen bei der Datenaufnahme und Bildinterpretation abgewogen werden.
    Der Radiologe 05/2013; 53(5). DOI:10.1007/s00117-012-2344-x · 0.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported by people moving in a strong static magnetic field.
    Physics in Medicine and Biology 04/2013; 58(8):2625-2640. DOI:10.1088/0031-9155/58/8/2625 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CLINICAL/METHODICAL ISSUE: The spatial, temporal and spectral resolution in magnetic resonance imaging (MRI) is in many cases currently not sufficient to detect submillimeter lesions or to image the dynamics of the beating heart. STANDARD RADIOLOGICAL METHODS: At present MRI systems at 1.5 T and 3 T are the standard units for clinical imaging. METHODICAL INNOVATIONS: The use of ultrahigh magnetic fields of 7 T and higher increases the signal-to-noise ratio, which holds promise for a significant improvement of the spatial and/or temporal resolution as well as for new contrast mechanisms. PERFORMANCE: With 7 T MRI, images of the brain have been acquired routinely with a spatial resolution of 0.3 mm. The theoretical improvement of the signal-to-noise ratio is often not fully realized due to B1 inhomogeneities and contrast variations. ACHIEVEMENTS: With MRI at 7 T a notable increase in spatial resolution can be achieved. Methods such as time-of-flight MR angiography and susceptibility-weighted imaging (e.g. neurofunctional MRI, fMRI) profit especially from the higher field strengths. Transmission field inhomogeneities are still a major challenge for ultrahigh field (UHF) MRI and are also a partially unsolved safety problem. PRACTICAL RECOMMENDATIONS: The use of UHF MRI is currently limited to special applications and the expected gain of the high field must be weighed against technical limitations in both image acquisition and interpretation.
    Der Radiologe 04/2013; · 0.41 Impact Factor