A Preclinical Rodent Model of Radiation-induced Lung Injury for Medical Countermeasure Screening in Accordance With the FDA Animal Rule

Division of Translational Radiation Sciences, Dept of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Health physics (Impact Factor: 1.27). 10/2012; 103(4):463-73. DOI: 10.1097/HP.0b013e31826386ef
Source: PubMed


The purpose of preclinical murine model development is to establish that the pathophysiological outcome of the rodent model of radiation-induced lung injury is sufficiently representative of the anticipated pulmonary response in the human population. This objective is based on concerns that the C57BL/6J strain may not be the most appropriate preclinical model of lethal radiation lung injury in humans. In this study, the authors assessed this issue by evaluating the relationship between morbidity (pulmonary function, histopathologic damage) and mortality among three strains of mice: C57BL/6J, CBA/J, and C57L/J. These different strains display variations in latency and phenotypic expression of radiation-induced lung damage. By comparing the response of each strain to the human pulmonary response, an appropriate animal model(s) of human radiation-induced pulmonary injury was established. Observations in the C57L/J and CBA/J murine models can be extrapolated to the human lung for evaluation of the mechanisms of action of radiation as well as future efficacy testing and approving agents that fall under the "Animal Rule" of the U.S. Food and Drug Administration (FDA) (21 CFR Parts 314 and 601).

10 Reads
    • "The MCART database. MCART maximizes prospective experimental design through use of its extensive database and well-characterized and validated animal models in the mouse and NHP (Farese et al. 2009; MacVittie et al. 2012a and b; Booth et al. 2012a and b; Plett et al. 2012, 2014; Chua et al. 2012, 2014; Jackson et al. 2012; Garofalo et al. 2014; MacVittie et al. 2014). MCART recently focused its animal model research platform to include procurement of signs and laboratory parameters of multiorgan damage at all available observation times through the appearance of the ARS and DEARE. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since controlled clinical studies on drug administration for the acute radiation syndrome are lacking, clinical data of human radiation accident victims as well as experimental animal models are the main sources of information. This leads to the question of how to compare and link clinical observations collected after human radiation accidents with experimental observations in non-human primate (NHP) models. Using the example of granulocyte counts in the peripheral blood following radiation exposure, approaches for adaptation between NHP and patient databases on data comparison and transformation are introduced. As a substitute for studying the effects of administration of granulocyte-colony stimulating factor (G-CSF) in human clinical trials, the method of mathematical modeling is suggested using the example of G-CSF administration to NHP after total body irradiation.
    Health physics 10/2015; 109(5):493-501. DOI:10.1097/HP.0000000000000355 · 1.27 Impact Factor
  • Source
    • "It is important to understand and elucidate the mechanisms that underlie radiation-induced fibrosis (RIF). Many animal models have been established to study RIF in multiple organs, such as lung (Jackson et al. 2012), GI (Rieder et al. 2012), and liver (Du et al. 2010). Until recently, these RIF models were established primarily using rodents. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus, and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition, respectively, suggesting possible crosstalk between spleen and other organs. These data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs.
    Health physics 10/2015; 109(5):374-390. DOI:10.1097/HP.0000000000000343 · 1.27 Impact Factor
  • Source
    • "One of MCART's functions is to develop/characterize animal models of radiation injury. Accordingly, MCART has had success establishing total body irradiation doseresponse ranges and survival curves for H-ARS and GI-ARS in mice and in lung whole-thorax irradiation [Booth et al., 2012a; Jackson et al., 2012; McGurk et al., 2012; Plett et al., 2012] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibility of a public health radiological or nuclear emergency in the United States remains a concern. Media attention focused on lost radioactive sources and international nuclear threats, as well as the potential for accidents in nuclear power facilities (e.g., Windscale, Three Mile Island, Chernobyl, and Fukushima) highlight the need to address this critical national security issue. To date, no drugs have been licensed to mitigate/treat the acute and long-term radiation injuries that would result in the event of large-scale, radiation, or nuclear public health emergency. However, recent evaluation of several candidate radiation medical countermeasures (MCMs) has provided initial proof-of-concept of efficacy. The goal of the Radiation Nuclear Countermeasures Program (RNCP) of the National Institute of Allergy and Infectious Diseases (National Institutes of Health) is to help ensure the government stockpiling of safe and efficacious MCMs to treat radiation injuries, including, but not limited to, hematopoietic, gastrointestinal, pulmonary, cutaneous, renal, cardiovascular, and central nervous systems. In addition to supporting research in these areas, the RNCP continues to fund research and development of decorporation agents targeting internal radionuclide contamination, and biodosimetry platforms (e.g., biomarkers and devices) to assess the levels of an individual's radiation exposure, capabilities that would be critical in a mass casualty scenario. New areas of research within the program include a focus on special populations, especially pediatric and geriatric civilians, as well as combination studies, in which drugs are tested within the context of expected medical care management (e.g., antibiotics and growth factors). Moving forward, challenges facing the RNCP, as well as the entire radiation research field, include further advancement and qualification of animal models, dose conversion from animal models to humans, biomarker identification, and formulation development. This paper provides a review of recent work and collaborations supported by the RNCP.
    Drug Development Research 02/2014; 75(1):23-8. DOI:10.1002/ddr.21163 · 0.77 Impact Factor
Show more