Article

XB130 Mediates Cancer Cell Proliferation and Survival through Multiple Signaling Events Downstream of Akt

Hungarian Academy of Sciences, Hungary
PLoS ONE (Impact Factor: 3.53). 08/2012; 7(8):e43646. DOI: 10.1371/journal.pone.0043646
Source: PubMed

ABSTRACT XB130, a novel adaptor protein, mediates RET/PTC chromosome rearrangement-related thyroid cancer cell proliferation and survival through phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway. Recently, XB130 was found in different cancer cells in the absence of RET/PTC. To determine whether RET/PTC is required of XB130-related cancer cell proliferation and survival, WRO thyroid cancer cells (with RET/PTC mutation) and A549 lung cancer cells (without RET/PTC) were treated with XB130 siRNA, and multiple Akt down-stream signals were examined. Knocking-down of XB130 inhibited G(1)-S phase progression, and induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Knocking-down of XB130 reduced phosphorylation of p21Cip1/WAF1, p27Kip1, FOXO3a and GSK3β, increased p21Cip1/WAF1protein levels and cleavages of caspase-8 and-9. However, the phosphorylation of FOXO1 and the protein levels of p53 were not affected by XB130 siRNA. We also found XB130 can be phosphorylated by multiple protein tyrosine kinases. These results indicate that XB130 is a substrate of multiple protein tyrosine kinases, and it can regulate cell proliferation and survival through modulating selected down-stream signals of PI3K/Akt pathway. XB130 could be involved in growth and survival of different cancer cells.

Download full-text

Full-text

Available from: Valentina De Falco, May 26, 2014
1 Follower
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3' untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.
    PLoS ONE 03/2013; 8(3):e59057. DOI:10.1371/journal.pone.0059057 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe acute kidney injury (AKI) is frequently accompanied by maladaptive repair and renal fibrogenesis; however, the molecular mechanisms that mediate these acute and chronic consequences of AKI remain poorly understood. In this study, we examined the role of epidermal growth factor receptor (EGFR) in these processes using waved-2 (Wa-2) mice, which have reduced EGFR activity, and their wild-type (WT) littermates after renal ischemia. Renal EGFR phosphorylation was induced within 2 days after ischemia, increased over time, and remained elevated at 28 days in WT mice, but this was diminished in Wa-2 mice. At the early stage of postischemia (2 days), Wa-2 mice developed more severe acute renal tubular damage with less reparative responses as indicated by enhanced tubular cell apoptosis, and reduced dedifferentiation and proliferation as compared to WT animals. At the late stage of postischemia (28 days), Wa-2 mice exhibited a less severe renal interstitial fibrosis as shown by reduced activation/proliferation of renal myofibroblasts and decreased deposition of extracellular matrix proteins. EGFR activation also contributed to cell cycle arrest at the G2/M phase, a cellular event associated with production of profibrogenetic factors, in the injured kidney. Collectively, these results indicate that severe AKI results in sustained activation of EGFR, which is required for reparative response of renal tubular cells initially, but eventually leads to fibrogenesis.
    American Journal Of Pathology 05/2013; 17(1). DOI:10.1016/j.ajpath.2013.04.005 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized. In this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved. The proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, alpha-catenin and beta-catenin, and downregulated mesenchymal markers including fibronectin and vimentin. Expression of oncoproteins related to tumor metastasis, such as MMP2, MMP9, and CD44, was also significantly reduced. These findings indicate that XB130 enhances cell motility and invasiveness by modulating the EMT-like process, while silencing XB130 in GC suppresses tumorigenesis and metastasis, suggesting that it may be a potential therapeutic target.
    Journal of Translational Medicine 01/2014; 12(1):1. DOI:10.1186/1479-5876-12-1 · 3.99 Impact Factor